Зу для акб на полевых транзисторах

Содержание

Простыми словами о ремонте телевизоров и домашней бытовой техники своими руками

Зу для акб на полевых транзисторах

Здравствуйте друзья!
Очень много просьб приходит ко мне от автолюбителей, порекомендовать зарядное устройство для автомобильных аккумуляторов, которое было бы мощным и с током более 15 А. Побороздив просторы интернета, я наткнулся на очень занимательную схемку, которую и хочу представить моим читателям.
Занимательна эта схема тем, что очень проста в исполнении. Единственное, что может привести к трудностям, так это поиск мощного транзистора КТ947, так как в настоящее время промышленностью он не выпускается. Но, если учесть, что это зарядное устройство может иметь ток до 20 А, можно приложить усилия для поиска данного компонента.
Если посмотреть профессиональным взглядом, то можно увидеть, что данная схема представляет собой мощный регулируемый блок питания, для сборки которого понадобятся всего два транзистора.
Трансформатор понадобится любой, у которого выходное напряжение должно быть от 24 до 30 вольт. Вторичная обмотка должна иметь серединный вывод. Таким образом, при, например, общем напряжении в 24 вольта, на среднем отводе должно быть ровно наполовину меньше, т.е. 12 вольт.
Стабилитрон будем брать мощностью на 1 ватт, так как от его номинала будет зависеть диапазон выходного напряжения. Для снижения шумов стабилитрона VD3, параллельно ему ставится конденсатор C1. Как уже говорилось выше, в схеме задействованы два силовых ключа: VT2 (КТ947) – основной, а для его управления используется второй мощный составной ключ VT1 (КТ827).
КТ947 может быть заменён аналогом или менее мощными транзисторами (КТ819, 2N3055), но при этом отдаваемый ток будет меньшим, 8 – 10 Ампер. КТ827 может быть заменён на TIP142 или BDW83C. Плавная регулировка выходного напряжения будет обеспечиваться переменным резистором R2, номинал которого может быть от 4,7 до 22 кОм. Данный вариант сборки позволяет плавно регулировать выходное напряжение от 0 до 15 Вольт.
Транзисторы, используемые в схеме, должны быть расположены на радиаторах охлаждения.
Зу для акб на полевых транзисторах
VD1, VD2 – Д132-50, VD3 – Д815Е; C1, C3 – 1000мкфХ25В, С2 – 0,01 мкф; R1, R3 – 1 кОм, R2 – 10 кОм; VT1 – КТ827, VT2 – КТ947.
Зу для акб на полевых транзисторах
Даташит КТ947 вы можете найти в Библиотеке данного сайта. Там же есть и таблица отечественных биполярных транзисторов, руководствуясь которой, можно подобрать наиболее близкие аналоги.
Если вам не трудно, поделитесь, пожалуйста, в соц.сетях данным материалом.

17 комментариев

Собрал, работает , но ток не регулируется,Стоит 3,38 А.Правда использовал диодный мост и транс без отмотки от середины. Транзисторы применил TIP 35c и TIP 147. Причем 2 TIP 35c запаралелил для умощнения. Схему проверил, исе правильно. Что не так?

Читать также:  Уличный светодиодный светильник с фотореле

Транс нужен минимум на 24 В и с серединным отводом.

Сам присматривался к этой схеме, но в итоге остановился на более сложном параметрическом стабилизаторе, но с силовым ключем по этой схеме 947/827.
Не понятно в данном случае требование к трансу с отводом… на выходе с диодов , все равно получаем 1/2U вторичной обмотки. Единственный плюс среднего отвода — возможность посадки всех полупроводников на единый радиатор без изоляции… В чем я не прав?

Можно и с простым трансформатором, но мощность будет меньше (Iобщ. = I1 + I2… + In). А ещё это делается, что бы не накапливать статическое электричество на линиях передачи, которое может пробить трансформатор, а также позволяет точнее балансировать сигнал.

Не согласен. КПД трансформатора с обмоткой без отвода, но с мостом, будет в два раза выше чем КПД трансформатора со средним выводом и двумя диодами, как в схеме.
Иными словами, если на приведенном на схеме трансе включить вторичные обмотки в параллель и использовать мост, то при том же напряжении, что на схеме с отводом и двумя диодами, а напряжение никак не измениться, с моста снимем ток в два раза больше.

Возможно вы правы, при сборке я не вдавался в такие рассуждения. Как сказано в статье схему я нашел в сети и попробовал собрать бп. Получилось отлично и то, что мне было нужно. Что ж, возможно кто-нибудь воспользуется вашими советами. Комментарии на данном сайте к тому и призваны, чтобы посетители могли сказать свою точку зрения и поделиться своими знаниями, а также поправить автора. Я никоим образом не претендую на исключительную правильность моих суждений. Спасибо вам за предложения по поводу данной статьи. Надеюсь, что и по другим материалам услышим ваше мнение.

С Новым годом! Удачи и наилучшими пожеланиями@

Скажите пожалуйста! Это получается транзисторы увеличивают выходной ток независимо если будет ток меньше на трансформаторе?

Транзисторы увеличивают мощность

Скажите а можно ли сделать отдельно регулировку тока независимо от напряжения в этой схеме, может что то добавить?

Можно. В сети полно схем.

И еще хотел бы узнать, можно ли вместо кт827 поставить тот же кт947 ?

Скажите пожалуйста если я поставлю два силовых транзистора ТК235-40-1-2 УХЛ2 трансформатор не будет греться?

А скажите пожалуйста. В этой схеме присутствует защита от переплюсовки?

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Зу для акб на полевых транзисторах

Категорически приветствую всех читателей!

Написать данную статью меня побудили несколько факторов: борьба с потенциальным алкоголизмом, желание несколько упорядочить «кашу» из накопившейся информации и, конечно, большое желание помочь единомышленникам.

В конечном итоге мы получим зарядное устройство с линейной характеристикой выходного тока. Это означает, что зарядка будет происходить в два этапа — постоянным заданным вручную током до набора заданного напряжения, затем постоянным заданным напряжением. При этом выходной ток будет плавно снижаться вплоть до нуля, когда заряд будет полностью окончен. Это самый правильный способ зарядки.

Также мы добавим режим десульфатации аккумуляторной батареи. Такой функцией обладают некоторые заводские зарядные устройства, например, Кедр-Авто 10. Такой зарядник у меня так же имеется, и его режим работы мне не очень нравится: во-первых, он не производит должным образом зарядку постоянным напряжением, а просто падает в дозарядку малым током. Окончания зарядки придется ждать очень долго; во-вторых, в интересующем нас режиме "Цикл" максимальное напряжение целенаправленно увеличено до 15,5 вольт, чтобы устройство не отключалось. Это в конечном итоге приведёт к перезаряду аккумулятора. Использованная у меня реализация лишена этих недостатков.

Ключевые моменты статьи для удобства восприятия и навигации я выделил полужирным шрифтом.

Лирика: данный текст ориентирован на начинающих радиолюбителей, подобных мне самому. Собственно, я сам почти год назад не держал в руках паяльник, пока не набрёл на статью Андрея Голубева про изготовление лабораторного блока питания из компьютерного БП. Не имея четкого представления, зачем он мне впоследствии пригодится, я поставил себе задачу во что бы то не стало разобраться и сделать себе такое устройство. И это мне удалось. Выражаю огромную человеческую благодарность Андрею и Юрию Вячеславовичу за посильную помощь в моих начинаниях. Много крови я у них выпил. Я не повторяю статью Андрея, но постараюсь ключевые моменты переделки раскрыть более подробно, останавливаясь на моментах, которые вызывали у меня много вопросов. Прошу воспринимать данный материал как отчет о проделанной работе. Чтобы понимать, о чем я вообще говорю, вам необходимо изучить вышеупомянутые статьи.

Читать также:  Как правильно выставить лазерный уровень

Многие здесь и сейчас присутствующие знают, что я человек расчетливый, и не ищущий легких путей. И недавно, промывая подкапотку любимого авто от месячной пыли, обнаружил недобро косящийся на меня красный глаз индикатора плотности в банке аккумуляторной батареи. В связи с никак не радующими глаз ценами на аккумуляторы, да и что угодно в наше время, в принципе, решил, что не стоит оставлять без внимания такой важный элемент автомобиля, как аккумуляторная батарея, пробуждающая 6 цилиндров в сибирские морозы. Готовь сани летом, как говорится. А с другой стороны, не кошерно таскать в гараж лабораторный блок питания, в который вложил душу.

А что нам стоит дом построить?

За период создания вышеупомянутого лабораторника у меня скопилось достаточной количество барахла, которое можно превратить в объект обсуждения – аккумуляторное зарядное устройство.
По сути, это тот же лабораторный блок питания, но с некоторыми ограничениями – минимальное напряжение на выходе равно 14,4В, максимальное 16В, блок питания не стартует без подключенного к выходным клеммам аккумулятора и имеет защиту от переполюсовки. В штатном режиме регулятор напряжения всегда в крайнем левом положении, и напряжение на выходе равно 14,4В. Повышенное напряжение используется для "пинка" запущенным аккумуляторам.

Суть зарядного устройства: обеспечить стабилизированное напряжение 14,4 вольта и заданный ограниченный ток. Проще говоря, в начале процесса зарядки ток будет максимальным, заданным реостатом. По мере заряда батареи, собственное напряжение аккумулятора будет расти. В конце концов, когда напряжение аккумулятора станет 14,4 вольта, блок питания перейдет в режим стабилизации напряжения и станет постепенно снижать ток до нуля. В таком состоянии аккумулятор может находиться сколь угодно долго, и ничего плохого с ним не произойдет.

Мне по вышеупомянутой причине сия поделка обошлась в 0 рублей и 0 копеек, если же все комплектующие покупать поштучно, бюджет может подрасти до 1000 рублей, где большую часть занимают вольтамперметры. От момента задумки до реализации прошла неделя. Делал в основном вечерами, но пару дней посвятил процессу полностью.

На этом описательно-вступительную часть предлагаю считать оконченной и перейти к самому интересному.
Достался в виде трупа блок питания ATX:

Зу для акб на полевых транзисторах

Видно следы отвратительного ремонта: силовые ключи и диодные сборки вообще не прикручены к радиаторам. Схема очень схожа с этой:

Зарядное устройство свинцовых аккумуляторов по методу Кабанова

Автор: Станков А. Д.
Опубликовано 21.06.2011.
Создано при помощи КотоРед.

Доброго дня, уважаемые радиолюбители и по совместительству – автолюбители.

Уж сколько теоретических изысканий, статей, разработок, изделий посвящено теме зарядных устройств (ЗУ) для свинцовых акуммуляторов (СА), что порой, даже опытному электронщику с базовыми знаниями физики и химии непросто разобраться в выборе ЗУ.

Мы не претендуем на «научность» этой статьи, а посему, для лучшей читабельности не будем апеллировать к первоисточникам, хотя цифры и факты из оных будут приведены ниже.

Известно, что 84% СА выходят из строя из-за сульфатации пластин, а так как стоимость СА почему-то всё время растёт, то весьма актуальной задачей становится продление срока службы СА, чему собственно и посвящается этот опус с презентацией Вам изделия, эффективно решающего эту задачу.

Итак, существует несколько научно обоснованных способов борьбы с сульфатацией пластин СА:

1. Заряд слабым током

почти полностью устраняет выделение газов в порах активной массы пластин и облегчает постепенный переход сульфата в губчатый свинец и двуокись свинца на пластинах. Серная кислота (СК) успевает диффундировать в окружающий пластины раствор СК.

Такой процесс «лечения» СА требует нескольких суток, но при «застарелой» сульфатации неэффективен.

2. Серия «лечебных» циклов заряд – разряд.

Величины и соотношения токов приводятся разные, но в большинстве источников Iз=0,1С, Iр=0,01С (С – ёмкость СА), а количество циклов колеблется от 7 до 10. Причём, сначала необходим полный разряд, потом полный заряд и т.д. Такое «лечение» позволяет восстанавливать СА, потерявшие 40…50% своей номинальной ёмкости, но чтобы восстановить свой старенький СА, автолюбитель должен взять отпуск минимум на неделю.

Здесь следует акцентировать Ваше внимание, что под этот способ многие разработчики пытаются подвести метод заряда в первую полуволну синусоидального напряжения частотой промышленной сети 50 герц током 0,1С и разряда во вторую полуволну током 0,01С. Метод очень прост в реализации и фразеологично очень похож на описанный выше, но не имеет научного подтверждения и, по крайней мере, весьма сомнителен.

3. Заряд с прерываниями

требует на 50% больше времени, чем способ 1, но более эффективен, т.к. позволяет устранять даже застарелую сульфатацию. К сожалению, неприемлем из-за длительности процесса.

Читать также:  Чем отличается технологическая карта от технологического процесса

4. Всевозможные комбинации способов

1, 2, 3, но ограниченные временными рамками дабы не пугать автолюбителей. Это уже попытки продвинутых разработчиков усовершенствовать очевидное и попытаться с этого получить дивиденды.

5. Способ Кабанова Б.Н.

заряд СА импульсным током большой величины. Наиболее эффективен даже при застарелой сульфатации.

Казалось бы, чего тут думать, давно бы все ЗУ сделали по способу Кабанова, но! При этом способе необходимо обеспечить ток в импульсе до 1С (Еще большие токи могут привести к преждевременному разрушению пластин СА) Например, для СА с С= 55А/ч необходимо обеспечить ток в импульсе до 50А, что требовало от ЗУ огромной мощности и соответствующих размеров. Для автолюбителя и этот вариант был неприемлем. Но, с развитием комплектующих элементов, в частности, ключей на базе полевых транзисторов (HEXFET®) стало возможным этот метод реализовать в весьма компактном устройстве.

На основании вышеизложенного нами было очерчено ТЗ для будущего ЗУ.

  1. ЗУ должно эффективно «лечить», или профилактически не допускать сульфатацию пластин СА;
  2. ЗУ не должно недозаряжать, или перезаряжать СА;
  3. ЗУ должно позволять плавно менять напряжение окончания заряда в пределах от 13,6 до 15,2В (Для температурной коррекции заряда СА);
  4. ЗУ должно зарядить СА с С=55А/ч менее, чем за сутки;
  5. ЗУ может быть подключено к СА столь угодно долго, не причиняя ему вреда после полного заряда;
  6. ЗУ должно быть лёгким, компактным, желательно в унифицированном корпусе;
  7. ЗУ должно быть легко повторяемым радиолюбителем средней квалификации и недорогим в изготовлении.

Схема разработанного нами ЗУ, представлена на Рис. 1

Зу для акб на полевых транзисторах

20В с трансформатора Тr1 выпрямляется мостом VD1 и сглаженное конденсатором С1, поступает для питания схемы = 28В.

ШИМ, собранный на м/с TL494, вырабатывает короткие импульсы с частотой порядка 3 кГц (f выбрана с учётом уменьшения динамических потерь в силовом ключе). С выхода 9 м/с импульсы поступают через «ключи раскачки» VT1, VT2 на силовой ключ VT3, подающий импульсы тока порядка 20А на заряжаемый СА. Причём, пауза между очередными импульсами составляет более 90% от общего периода, что более чем достаточно для успешной диффузии серной кислоты в окружающий пластины раствор СК. Напомним, эффективный ток заряда достаточно мал.

Стабильность тока заряда поддерживается с помощью ОС на измерительных резисторах R17, R18 и резисторе R12.

С помощью резистора R1 выбирается напряжение окончания заряда в зависимости от температуры СА (от 13,6 до 15,2В).

Миллиамперметр с помощью переключателя SA2 измеряет эффективный ток заряда, или напряжение на зажимах СА.

Эффективный ток заряда регулируется от 0 до 1,7А, что позволяет заряжать СА разной ёмкости. Например, СА 55А/ч мы заряжаем эффективным током 1,4А/ч.

Шкала миллиамперметра по напряжению проградуирована в пределах 0мА – 10В…..100мА – 15В. Такая узкая градуировка достигнута с помощью мостовой схемы измерения на элементах R20, R21, R22, R23, VD2.

Обвязка м/с TL494 типовая и в объяснениях не нуждается.

Цепочка VD3, R24, C9 гасит обратный выброс с индуктивности подводящих проводов к СА.

Все установленные пассивные элементы с точностью ±10%.

При правильной сборке и указанных элементах схема не требует наладки.

При максимальном эффективном токе 1,7А температура трансформатора и радиатора не превышают 45ºС при внешней температуре не более 25ºС.

Выбор напряжения окончания заряда необходимо производить из графика зависимости напряжения окончания заряда от температуры СА, представленного на Рис.2

Зу для акб на полевых транзисторах

Конструкция ЗУ на фото. Радиатор применён из этого же сгоревшего БП, на нём установлен силовой ключ V3 на изолирующей прокладке и диодный мост VD1. Конденсатор С7 у нас состоит из 3х С=3300мкф*35В

Печатная плата представлена на Рис. 3 и Рис.4

Зу для акб на полевых транзисторах

Зу для акб на полевых транзисторах

Ключи раскачки могут быть заменены на КТ645 и КТ646.

Обязательно! Перед подключением кабеля СА к разъёму ЗУ, подключить «крокодилы» к клеммам СА:

— если нет звуковой сирены, подключить к разъёму ЗУ;

— если слышна сирена, поменяйте местами полюса и подключайте к разъёму ЗУ.

Схема кабеля от СА до ЗУ представлена на Рис.5

Зу для акб на полевых транзисторах

Технические характеристики ЗУ:

Напряжение питающей сети от 150 до 240В;

Потребляемая мощность не более 60Вт;

Импульсный ток заряда СА – 20А;

Эффективный ток заряда – 0…1,7А;

Напряжение прекращения заряда – 13,6…15,2В;

Диапазон рабочих температур от -20ºС до +40ºС;

Габаритные размеры 145: 150:85;

Зу для акб на полевых транзисторах

Зу для акб на полевых транзисторах

Зу для акб на полевых транзисторах

Зу для акб на полевых транзисторах

Зу для акб на полевых транзисторах

Зу для акб на полевых транзисторах

Те СА, которые ещё можно восстановить, заметно восстановятся за несколько циклов заряда-разряда, причём, разряд возможен при нормальной эксплуатации СА на автомобиле в штатном режиме.

Напомним, нет и не может быть ЗУ-панацеей для всех СА. СА, у которых длительное время напряжение на зажимах менее 10,8В восстановлению не подлежат.

Оставить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *