Управление симистором через транзистор

Тиристоры нашли широкое применение в полупроводниковых устройствах и преобразователях. Различные источники питания, частотные преобразователи, регуляторы, возбудительные устройства для синхронных двигателей и много других устройств строились на тиристорах, а в последнее время их вытесняют преобразователи на транзисторах. Основной задачей для тиристора является включение нагрузки в момент подачи управляющего сигнала. В этой статье мы рассмотрим, как управлять тиристорами и симисторами.

Управление симистором через транзистор

Определение

Тиристор (тринистор) — это полупроводниковый полууправляемый ключ. Полууправляемый — значит, что вы можете только включать тиристор, отключается он только при прерывании тока в цепи или если приложить к нему обратное напряжение.

Управление симистором через транзистор

Он, подобно диоду, проводит ток только в одном направлении. То есть для включения в цепь переменного тока для управления двумя полуволнами нужно два тиристора, для каждой по одному, хотя не всегда. Тиристор состоит из 4 областей полупроводника (p-n-p-n).

Другой подобный прибор называется симистор — двунаправленный тиристор. Его основным отличием является то, что ток он может проводить в обе стороны. Фактически он представляет собой два тиристора соединённых параллельно навстречу друг другу.

Управление симистором через транзистор

Основные характеристики

Как и любых других электронных компонентов у тиристоров есть ряд характеристик:

Падение напряжения при максимальном токе анода (VT или Uос).

Прямое напряжение в закрытом состоянии (VD(RM) или Uзс).

Обратное напряжение (VR(PM) или Uобр).

Прямой ток (IT или Iпр) – это максимальный ток в открытом состоянии.

Максимально допустимый прямой ток (ITSM) — это максимальный пиковый ток в открытом состоянии.

Обратный ток (IR) — ток при определенном обратном напряжении.

Постоянный ток в закрытом состоянии при определенном прямом напряжении (ID или Iзс).

Постоянное отпирающее напряжение управления (VGT или UУ).

Ток управления (IGT).

Максимальный ток управления электрода IGM.

Максимально допустимая рассеиваемая мощность на управляющем электроде (PG или Pу)

Принцип работы

Когда на тиристор подают напряжение он не проводит ток. Есть два способа включит его – подать напряжение между анодом и катодом достаточное для открытия, тогда его работа ничем не будет отличаться от динистора.

Управление симистором через транзистор

Другой способ – это подать кратковременный импульс на управляющий электрод. Ток открытия тиристора лежит в пределах 70-160 мА, хотя на практике эта величина, как и напряжение которое нужно приложить к тиристору зависит от конкретной модели и экземпляра полупроводникового прибора и даже от условий, в которых он работает, таких, например, как температура окружающей среды.

Управление симистором через транзистор

Кроме управляющего тока, есть такой параметр как ток удержания — это минимальный ток анода для удержания тиристора в открытом состоянии.

После открытия тиристора управляющий сигнал можно отключать, тиристор будет открыт до тех пор, пока через него протекает прямой ток и подано напряжение. То есть в цепи переменного тиристор будет открыт в течении той полуволны напряжение которой смещает тиристор в прямом направлении. Когда напряжение устремится к нулю, снизится и ток. Когда ток в цепи упадет ниже величины тока удержания тиристора — он закроется (выключится).

Управление симистором через транзистор

Полярность управляющего напряжения должна совпадать с полярностью напряжения между анодом и катодом, что вы наблюдаете на осциллограммах выше.

Управление симистором аналогично хоть и имеет некоторые особенности. Для управления симистором в цепи переменного тока нужно два импульса управляющего напряжения — на каждую полуволну синусоиды соответственно.

После подачи управляющего импульса в первой полуволне (условно положительной) синусоидального напряжения ток через симистор будет протекать до начала второй полуволны, после чего он закроется, как и обычный тиристор. После этого нужно подать еще один управляющий импульс для открытия симистора на отрицательной полуволне. Это наглядно проиллюстрировано на следующих осциллограммах.

Полярность управляющего напряжения должна соответствовать полярности приложенного напряжения между анодом и катодом. Из-за этого возникают проблемы при управлении симисторами с помощью цифровых логических схем или от выходов микроконтроллера. Но это легко решается путем установки симисторного драйвера, о чем мы поговорим позже.

Управление симистором через транзистор

Распространенные схемы управления тиристорами или симисторами

Самой распространенной схемой является симисторный или тиристорный регулятор.

Управление симистором через транзистор

Здесь тиристор открывается после того как на конденсаторе будет достаточная величина для его открытия. Момент открытия регулируется с помощью потенциометра или переменного резистора. Чем больше его сопротивление — тем медленнее заряжается конденсатор. Резистор R2 ограничивает ток через управляющий электрод.

Эта схема регулирует оба полупериода, то есть вы получаете полную регулировку мощности почти от 0% и почти до 100%. Это удалось достичь, установив регулятор в диодном мосте, таким образом регулируется одна из полуволн.

Упрощенная схема изображена ниже, здесь регулируется лишь половина периода, вторая полуволна проходит без изменения через диод VD1. Принцип работы аналогичен.

Управление симистором через транзистор

Симисторный регулятор без диодного моста позволяет управлять двумя полуволнами.

Управление симистором через транзистор

По принципу действия почти аналогична предыдущим, но построена на симисторе с её помощью регулируются уже обе полуволны. Отличия заключаются в том, что здесь импульс управления подаётся с помощью двунаправленного динистора DB3, после того как конденсатор зарядится до нужного напряжения, обычно это 28-36 Вольт. Скорость зарядки также регулируется переменным резистором или потенциометром. Такая схема реализована в большинстве бытовых диммеров.

Управление симистором через транзистор

Такие схемы регулировки напряжения называется СИФУ — система импульсного фазового управления.

Управление симистором через транзистор

На рисунке выше изображен вариант управления симистором с помощью микроконтроллера, на примере популярной платформы Arduino. Симисторный драйвер состоит из оптосимистора и светодиода. Так как в выходной цепи драйвера установлен оптосимистор на управляющий электрод всегда подаётся напряжение нужной полярности, но здесь есть некоторые нюансы.

Читать также:  Как сделать картофелесажалку своими руками для минитрактора

Дело в том, что для регулировки напряжения с помощью симистора или тиристора нужно подавать управляющий сигнал в определенный момент времени, так чтобы срез фазы происходил до нужной величины. Если наугад стрелять управляющими импульсами — схема работать конечно будет, но регулировок добиться не выйдет, поэтому нужно определять момент перехода полуволны через ноль.

Так как для нас не имеет значения полярность полуволны в настоящий момент времени — достаточно просто отслеживать момент перехода через ноль. Такой узел в схеме называют детектор нуля или нуль-детектор, а в англоязычных источниках "zero crossing detector circuit" или ZCD. Вариант такой схемы с детектором перехода через ноль на транзисторной оптопаре выглядит следующим образом:

Управление симистором через транзистор

Оптодрайверов для управления симисторами есть множество, типовые – это линейка MOC304x, MOC305x, MOC306X, произведенные компанией Motorola и другими. Более того – эти драйверы обеспечивают гальваническую развязку, что убережет ваш микроконтроллер в случае пробоя полупроводникового ключа, что вполне возможно и вероятно. Также это повысит безопасность работы с цепями управления, полностью разделив цепь на «силовую» и «оперативную».

Заключение

Мы рассказали базовые сведения о тиристорах и симисторах, а также управлении ими в цепях с «переменкой». Стоит отметить, что мы не затрагивали тему запираемых тиристоров, если вас интересует этот вопрос – пишите комментарии и мы рассмотрим их подробнее. Также не были рассмотрены нюансы использования и управления тиристорами в силовых индуктивных цепях. Для управления «постоянкой» лучше использовать транзисторы, поскольку в этом случае вы решаете, когда ключ откроется, а когда он закроется, повинуясь управляющему сигналу…

В. ВОЛОДИН,
г. Одесса,
Украина

Применение симистора вместо двух тринисторов, включенных встречно параллельно, ао многих случаях более оправдано, так как, кроме прочего, позволяет уменьшить габариты и стоимость устройства. Однако симисторы требуют сравнительно большего управляющего тока, что несколько ограничивает их применение в простых бестрансформаторных устройствах, питающихся непосредственно от сети через балластные элементы, гасящие избыток напряжения. В известных бестрансформаторных устройствах бытовой автоматики для уменьшения тока симистора использованы оп-тотиристорные или релейные промежуточные элементы.

Существенно уменьшить средний открывающий ток позволяет импульсное управление симистором. Подобное решение рассмотрено в [1 ], где описан узел управления, формирующий открывающие импульсы в начале каждого полупериода сетевого напряжения. Это устройство успешно работает совместно с активной нагрузкой, но с активно-индуктивной (обмотка электродвигателя или трансформатора) его работа будет неудовлетворительной, а в ряде случаев невозможной из-за фазового сдвига между напряжением сети и током в цепи нагрузки, а также из-за ограничения скорости нарастания тока нагрузки (эффект малой нагрузки).

Решить задачу можно, если синхронизировать устройство с паузами не напряжения сети, а тока нагрузки, причем в качестве датчика тока нагрузки удобно использовать сам симистор. Суть состоит в том, что когда между основными выводами 1 и 2 симистора малое напряжение, т. е. он открыт, через него протекает ток, а если между этими выводами присутствует положительное или отрицательное напряжение, большее постоянного открывающего, — закрыт. Следовательно, синхронизирующим должно быть напряжение между выводами 1 и 2 симистора. При этом, в отличие от традиционных узлов управления, формирующих открывающий ток по принципу "лишь бы не меньше", контроль напряжения на симисторе позволяет заметно снизить средний ток управления, поскольку он автоматически прекращается после открывания симистора.

На рис. 1 изображена упрощенная схема узла управления симистором, реализующего описанный способ. Датчик состояния симистора, собранный на транзисторах VT1 — VT3 и резисторах R1, R4, R5 по схеме, описанной в [2], формирует высокий выходной уровень, если си-mиctop VSI открыт.

Управление симистором через транзистор

Как только напряжение между выводами 1 и 2 закрытого симистора превысит 12 В, открываются либо транзистор VT3, либо VT1, VT2 в зависимости от полярности этого напряжения. В обоих случаях открывается транзистор VT4 и через него, резистор R6 и управляющий электрод симистора протекает открывающий ток. Значение этого тока (примерно 0,15 А) определяет сопротивление резистора R6.

Как только симистор откроется, напряжение на нем уменьшится до 1 . 1,5 В, что приведет к закрыванию всех транзисторов и прекращению открывающего симистор тока. Если ток через симистор не достигнет границы тока удержания, что может быть в случае индуктивной или малой активной нагрузки, то симистор закроется и процесс будет повторяться, пока симистор не отроется надежно.

В случае активной нагрузки обычно достаточно одного открывающего импульса, а при активно-индуктивной может потребоваться несколько. Причем с активной нагрузкой устройство потребляет ток примерно 0,3 мА, а при наличии индуктивной составляющей — до 3 мА. Из сказанного следует, что узел управления адаптируется к виду нагрузки и формирует ток, строго достаточный для открывания симистора.

На рис. 2 изображена практическая схема узла управления симистором. Питается узел непосредственно от сети переменного тока, как и нагрузка RH. Сетевое напряжение выпрямляет однополупериодный выпрямитель на диодах VD5, VD6 и стабилизирует на уровне 15 В стабилитрон VD4. Избыток сетевого напряжения гасит конденсатор СЗ.

Управление симистором через транзистор

Резистор R12 ограничивает импульсный ток через диоды выпрямителя при включении устройства в сеть, а резистор R11 разряжает конденсатор СЗ после выключения устройстаа. Конденсатор С1 сглаживает пульсации выпрямленного напряжения.

Стабилизированным напряжением 15 В, снимаемым с выводов А и Г, питается и функциональный узел, который определяет назначение всего устройства в целом. Функциональный узел должен потреблять ток не более 7 мА в случае активной нагрузки и не более 5 мА при активно-индуктивной с cosφ>0,7.

Читать также:  Покраска радиаторов отопления цена за работу

Цепь управления симистором VS1 состоит из конденсатора С2, резистора R10 и транзистора VT5. Напряжение, накопленное на этом конденсаторе, приложено к управляющему электроду симистора VS1 через резистор R10 и транзистор VT5. Резистор ограничивает открывающий ток на уровне 0,15 А.

Конденсатор С2 в паузах между открывающими импульсами заряжается через резистор R9 от стабилизированного напряжения. Одновременно этот резистор вместе с конденсатором С1 образуют RC-фильтр, не пропускающий импульсные помехи из цепи управления симистором в цепь питания функционального и управляющего узлов.

Транзистором VT5 управляет логический элемент ЗИЛИ — НЕ, собранный на транзисторе VT2 и диодах VD1 — VD3 . Разрешающий управление высокий уровень на выходе логического элемента будет тогда, когда, во-первых, на вывод Б узла управления поступит низкий уровень с функционального узла, во-вторых, на симисторе VS1 напряжение достигнет 12 В и, в-третьих, конденсатор С2 зарядится до напряжения 10 В, достаточного для открывания симистора.

Напряжение на симисторе контролирует датчик его состояния, собранный на транзисторах VT3, VT4, VT6 и резисторах R6, R8, R13 и R14, о работе которого рассказано выше. С аыхода функционального узла активный сигнал низкого уровня поступает на вывод В и далее на вход узла фазового управления, описанного ниже, и на один из входов логического элемента ЗИЛИ — НЕ.

За напряжением на конденсаторе С2 следит узел, собранный на транзисторе VT1 и резисторах R3 — R5. Если конденсатор С2 заряжен до напряжения 10 В, низкий активный уровень с коллектора транзистора VT1 поступает на один из входов элемента ЗИЛИ — НЕ.

Для получения законченного устройства (термостабилизатора, светорегулятора и т. д.) к описанному узлу управления симистором необходимо подключить тот или иной функциональный узел, который и будет определять заданную функцию устройства.

На рис. 3 изображена схема функционального узла, позволяющего на базе описанного устройства управления симистором построить двупозиционный термостабилизатор для инкубатора. Датчиком температуры служит однопереходный транзистор VT1. Длительный опыт эксплуатации этого транзистора в подобном режиме показал, что он обладает хорошей чувствительностью и временной стабильностью и как нельзя лучше подходит для такой роли.

Управление симистором через транзистор

Межбазовое сопротивление транзистора VT1 включено в плечо измерительного моста, состоящего из резисторов R1 — R3 и подстроечного резистора R4 или R5, в зависимости от положения переключателя SA1. Выходное напряжение моста поступает на вход компаратора, собранного на ОУ DA1. Резистор R6 обеспечивает температурный "гистерезис" около ±0,25°С.

При использовании транзистора КТ117 с другим буквенным индексом необходимо сначала сбалансировать мост грубо подборкой резистора R3, а затем точно резистором R4 при температуре +40 °С и резистором R5 — при +38°С. Измерительный мост и ОУ питаются от параметрического стабилизатора VD1R7.

Схема функционального узла, позволяющего реализовать фазовое управление си мистором, показана на рис. 4. Принцип работы устройства основан на снятии с узла управления сигнала синхронизации (с вывода В) и трансляции его с регулируемой задержкой на один из входов логического элемента ЗИЛИ — НЕ узла (на вывод Б). Регулируемую задержку формирует устройство, собранное на четырех инверторах.

Управление симистором через транзистор

Инвертор DD1.1 посредством последовательной цепи, состоящей из диода VD1 и резистора R1, удерживает конденсатор С1 в разряженном состоянии, пока на симисторе отсутствует напряжение (т. е. симистор открыт). В момент появления на симисторе напряжения 12 В высокий минусовый уровень элемента DD1.1 закрывает диод VD1 и начинается зарядка конденсатора С1 через резисторы R2, R3.

Как только напряжение на конденсаторе С1 достигнет порога срабатывания триггера Шмитта, собранного на инверторах DD1.3, DD1.4 и резисторах R4, R5, он переключится. Высокий выходной уровень триггера инвертирует элемент DD1.2, после чего низкий уровень поступит на вход узла управления симистором (на вывод Б). Резистор R1 замедляет разрядку конденсатора С1, что позволяет сформировать серию открывающих импульсов в случае активно-индуктивной нагрузки.

Узел управления был испытан с симисторами ТС2 — 10, ТС2 — 16, ТС2 — 25, ТС112 — 10, ТС112 — 16, ТС122 — 25. Без всякого предварительного отбора все они работали устойчиво. При использовании других симисторов рекомендуется подобрать резистор R10 с тем, чтобы получить необходимый открывающий ток управления, рекомендуемый справочной литературой.

Управление симистором через транзистор

Чертеж печатной платы узла управления предстаален на рис. 5. Она изготовлена из односторонне фольгированного стеклотекстолита толщиной 1,5 мм.

  1. Бирюков С. Симисторный термостабилизатор. — Радио, 1998, ╧ 1, с. 50, 51.
  2. Д. Г. Детектор нуля. — Млад конструктор, 1987, ╧ 2, с. 16.

Однажды для одного небольшого домашнего проекта мне потребовался регулятор мощности, пригодный для регулировки скорости вращения электромотора переменного тока. В качестве основы использовалась вот такая плата на базе микроконтроллера STM32F103RBT6. Плата была выбрана как имеющая честный RS232 интерфейс и имеющая при этом минимум дополнительных компонентов. На плате отсутствует слот под литиевую батарейку для питания часов, но приживить его — дело пятнадцати минут.

Итак, начнём с теории. Все знакомы с так называемой широтно-импульсной модуляцией, позволяющей управлять током в (или, что реже, напряжением на) нагрузке с максимальным КПД. Лишняя мощность в таком случае просто не будет потребляться, вместо того, чтобы рассеиваться в виде тепла, как при линейном регулировании, представляющем собой не более чем усложнённый вариант реостата. Однако, по ряду причин такое управление, будучи выполненным «в лоб», не всегда подходит для переменного тока. Одна из них — бо́льшая схемотехническая сложность, поскольку требуется диодный мост для питания силовой части на MOSFET или IGBT транзисторах. Этих недостатков лишено симисторное управление, представляющее собой модификацию ШИМ.

Читать также:  Фрезы для обработки алюминия

Симистор (TRIAC в англоязычной литературе) — это полупроводниковый прибор, модификация тиристора, предназначенный для работы в качестве ключа, то есть он может быть либо открыт, либо закрыт и не имеет линейного режима работы. Основное отличие от тиристора — двусторонняя проводимость в открытом состоянии и (с некоторыми оговорками) независимость от полярности тока (тиристоры и симисторы управляются током, как и биполярные транзисторы) через управляющий электрод. Это позволяет легко использовать симистор в цепях переменного тока. Вторая особенность, общая с тиристорами, — это свойство сохранять проводимость при исчезновении управляющего тока. Закрывается симистор при отключении тока между основными электродами, то есть, когда переменный ток переходит через ноль. Побочным эффектом этого является уменьшение помех при отключении. Таким образом, для открывания симистора нам достаточно подать на управляющий электрод открывающий импульс небольшой, порядка десятков микросекунд, длительности, а закроется он сам в конце полупериода переменного тока.

Симисторное управление учитывает вышеперечисленные свойства этого прибора и заключается в отпирании симистора на каждом полупериоде переменного тока с постоянной задержкой относительно точки перехода через ноль. Таким образом, от каждого полупериода отрезается «ломтик». Заштрихованная на рисунке часть — результат этой процедуры. Таким образом, на выходе вместо синусоиды мы будем иметь что-то, в известной степени напоминающее пилу:

Управление симистором через транзистор

Теперь наша задача — вовремя отпирать симистор. Эту задачу мы возложим на микроконтроллер. Приведённая ниже схема является результатом анализа имеющихся решений а также документации к оптронам. В частности, силовая часть взята из документации на симисторный оптрон производства Texas Instruments. Схема не лишена недостатков, один из которых — мощный проволочный резистор-печка, через который включён оптрон, детектирующий переход через ноль.

Управление симистором через транзистор

Как это работает? Рассмотрим рисунок.

Управление симистором через транзистор

На положительном полупериоде, когда ток через оптрон превышает некоторое пороговое значение, оптрон открывается и напряжение на входе микроконтроллера опускается практически до нуля (кривая «ZC» на рисунке). Когда же ток снова опускается ниже этого значения, на микроконтроллер снова поступает единица. Происходит это в моменты времени, отстоящие на dz от нуля тока. Это dz ощутимо, в моём случае составляет около 0.8 мс, и его необходимо учитывать. Это несложно: мы знаем период T и длительность импульса высокого уровня h, откуда dz = (h — T / 2) / 2. Таким образом, нам необходимо открывать симистор через dz + dP от переднего фронта сигнала с оптрона.

О фазовом сдвиге dP стоит поговорить отдельно. В случае c ШИМ постоянного тока среднее значение тока на выходе будет линейно зависеть от скважности управляющего сигнала. Но это лишь потому, что интеграл от константы даёт линейную зависимость. В нашем случае необходимо отталкиваться от значения интеграла синуса. Решение простого уравнения даёт нам искомую зависимость: для линейного изменения среднего значения тока необходимо менять фазовый сдвиг по закону арккосинуса, для чего достаточно ввести в управляющую программу LUT таблицу.

Всё, о чём я расскажу в дальнейшем, имеет прямое отношение к архитектуре микроконтроллеров серии STM32, в частности, к архитектуре их таймеров. Микроконтроллеры этой серии имеют разное число таймеров, в STM32F103RBT6 их семь, из которых четыре пригодны для захвата и генерации ШИМ. Таймеры можно каскадировать: для каждого таймера одно из внутренних событий (переполнение, сброс, изменение уровня на одном из входных или выходных каналов и т.д.; за подробностями отсылаю вас к документации) можно объявить выходным и направить его на другой таймер, назначив на него определённое действие: старт, стоп, сброс и т.д. Нам потребуются три таймера: один из них, работая в т.н. PWM input режиме, замеряет период входного сигнала и длительность импульса высокого уровня. По окончании измерения, после каждого периода генерируется прерывание. Одновременно с этим запускается связанный с этим событием таймер фазового сдвига, работающий в ждущем режиме. По событию переполнения этого таймера происходит принудительный сброс таймера, генерирующего выходной управляющий сигнал на симистор, таким образом, через каждый полный период переменного тока подстраивается фаза управляющего сигнала. Только первый таймер генерирует прерывание, и задача обработчика сводится к подстройке фазового сдвига (регистр ARR ждущего таймера) и периода ШИМ таймера (также регистр ARR) так, чтобы он всегда был равен половине периода переменного тока. Таким образом, всё управление происходит на аппаратном уровне и влияние программных задержек полностью исключается. Да, это можно было сделать и программно, но грех было не воспользоваться такой возможностью, как каскадируемые таймеры.

Выкладывать на обозрение код всего проекта я не вижу смысла, к тому же, он далёк от завершения. Приведу лишь фрагмент, содержащий описанный выше алгоритм. Он абсолютно независим от прочих частей и легко может быть портирован в другой проект на совместимом микроконтроллере.

И напоследок, видеоролик, показывающий устройство в действии:

Оставить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *