Угол подъема резьбы равен

Угол подъема резьбы равен

12.1. Резьбовые соединения

12.1.1. Общие сведения и основные виды и параметры резьбы. Классы прочности и материалы резьбовых деталей.

Резьбовыми соединениями называют разъемные соединения де­талей с помощью резьбы или резьбовыми крепежными деталями – винтами, болтами, шпильками, гайками.

Резьба образуется путем нанесения на поверхность деталей вин­товых канавок с сечением согласно профилю резьбы. Образованные таким образом выступы носят название витков.

Термин резьба про­изошел от технологического процесса ее изготовления – нарезания. Термин винт применяют как общий, объединяющий также болты и шпильки, и как частный, обозначающий ввинчиваемую деталь. Термин болт предполагает взаимодействие винта с головкой и гайки. Гайка это деталь с резьбовыми отверстиями, которую навинчивают на винт.

Резьбовые соединения нашли широкое применение в машиностроении. В современных машинах детали, имеющие резьбу, составляют свыше 60 % от общего количества деталей. К ним относятся большинство крепежных деталей, корпусных, например корпус двигателя с резьбовыми отверстиями для шпилек, валы, например коленчатые валы в связи с креплением крышек коренных и шатунных подшипников.

Широкое применение резьбовых соединений определяется:

— возможностью создания больших осевых сил;

— удобствами форм и малыми габаритами.

Помимо крепежных целей винтовые пары применяют для осуществления поступательного движения, например в подъемнике автомобиля.

К основным размерам резьбы относятся диаметры, профиль, шаг и угол подъема (рис. 12.1).

Диаметры резьбы: наружный d, внутренний d1 и средний d2. Профиль резьбы – это профиль выступа и канавки в плоскости ее сечения. Угол профиля a — угол между смежными боковыми сторонами.

Угол подъема резьбы равен

Угол подъема резьбы равенУгол подъема резьбы равен Угол подъема резьбы равен Угол подъема резьбы равен

Угол подъема резьбы равен Угол подъема резьбы равен

Угол подъема резьбы равен Угол подъема резьбы равен

Угол подъема резьбы равенУгол подъема резьбы равен

Рис. 10.1. Основные параметры резьбы

Профиль резьбы характеризуется также:

— высотой исходного треугольника резьбы Н;

— рабочей высоты профиля резьбы Н1.

Шаг резьбы Р – расстояние между ближайшими точками одноименных боковых сторон профиля резьбы.

Для многоходовой резьбы вводят дополнительный термин – ход винта Рh, равный произведению шага Р резьбы на число заходов z

Угол подъема резьбы равен. (12.1)

Для однозаходной резьбы понятия шаг и ход совпадают.

Угол подъема резьбы равен

Угол подъема резьбы равен

Рис. 12.2. Угол подъема резьбы

Угол подъема резьбы y — угол, образованный касательной к винтовой линии. Развернем винтовую линию (рис. 12.2) по среднему диаметру и определим тангенс угла подъема резьбы

Угол подъема резьбы равен. (12.2)

Резьбы по назначению разделяются на следующие группы:

— крепежные резьбы, предназначены для крепления деталей. Их выполняют, как правило, треугольного профиля. Применение этого профиля вызывается повышенным трением, повышенной прочностью резьбы, удобством изготовления.

— крепежно-уплотняющие резьбы предназначены как для скрепления деталей, так и для предохранения от вытекания жидкостей (в соединениях трубопроводов). Эти резьбы выполняют треугольными, но без зазоров.

— резьбы для передачи движения (в ходовых и грузовых винтах). Для уменьшения трения эти резьбы выполняют трапецеидальными с симметричным и несимметричным профилем, а иногда с прямоугольным профилем.

Резьбы в нашей стране и зарубежом стандартизированы.

Метрическая резьба (рис. 12.3) стандартизирована и является в нашей стране основной треугольной резьбой.

Угол подъема резьбы равен

Рис. 12.3. Метрическая резьба

Она характеризуется углом профиля a = 600 , срезом вершин профиля резьбы винта на расстоянии Н/8, вершин профиля резьбы гайки – Н/4. Высота исходного треугольника резьбы

Угол подъема резьбы равен.

Рабочая высота профиля

Угол подъема резьбы равен.

Рабочая высота профиля

Угол подъема резьбы равен.

Метрическую резьбу разделяют на резьбы с крупными и мелкими шагами. За основную принята резьба с крупным шагом. Резьба с мелким шагом применяется при динамических нагрузках, детали, у которых резьба применяется для регулировки. Шаги всех метрической резьбы представляют ступенчатый арифметический ряд.

Метрическая резьба с крупным шагом обозначается буквой М и числом, выражающим диаметр резьбы в мм, например М20. Для метрической резьбы с мелким шагом дополнительно указывается шаг цепи, например М20´1,5.

Трубная резьба стандартизирована и применяется для соединения труб и арматуры трубопроводов. Трубная резьба представляет собой мелкую дюймовую резьбу, которая выполняется с закруглениями профиля и без зазоров по выступам и впадинам для лучшего уплотнения. Ввиду большого распространения взаимнозаменяющих деталей с трубной дюймовой резьбой она сохраняет основное применение. За основной (номинальный) размер, характеризующий резьбу и указываемый в обозначении резьбы, применяют условный внутренний диаметр трубы (проход в свету).

Коническая резьба стандартизирована и обеспечивает непроницаемость без специальных уплотнений. Ее применяют для соединения труб, установки пробок и т. п. Непроницаемость достигается плотным прилеганием профилей по вершинам.

Крепежные винты Крепежные винты в зависимости от типа резьбового соединения применяют следующих исполнений (рис. 12.4):

— винты с гайками, называемые болтами (рис. 12.4, а);

— винты, ввинчиваемые в одну из скрепляемых деталей (рис. 12.4, б);

— шпильки с гайками (рис. 12.4, в).

Болты применяют для скрепления деталей небольшой толщины, при необходимости частого отвинчивания и завинчивания.

Винты применяют в случае достаточно большой толщины детали и ее прочности, отсутствия места для гайки.

Читать также:  Как соединить датчик движения с лампой

Шпильки применяют в тех же случаях, что и винты, но когда материал детали не обеспечивает требуемой прочности при частых разборках и сборках.

Угол подъема резьбы равен

Рис. 12.4. Основные типы резьбовых соединений

Стальные болты, винты и шпильки в соответствии со стандартом ГОСТ 1759-70 изготавливают 12 классов прочности

Класс прочности обозначается двумя числами. Первое число, умноженное на 100, указывает минимальное значение предела прочности, второе, деленной на 10 указывает на отношение предела текучести к пределу прочности, а, следовательно, их произведение, представляет собой предел текучести. Например, класс прочности болта – 4,6 имеет предел прочности sВ = 4×100 = 400 МПа, предел текучести – sТ = (6/10) ×400 = 240 Мпа; при классе прочности болта 10.9, sВ = 10 ×100 = 1000 Мпа, а sТ = (9/10) ×1000 = 900 Мпа. При стесненных габаритах принимают резьбовые детали высокого класса точности, что позволяет снизить массу узла. При этом материал резьбовых деталей принимают легированные стали типа 35Х, 40Х, 40Г2 и т. п. Термообработка позволяет повысить прочность резьбовых деталей на 75 %.

При отсутствии повышенных требований по металлоемкости и при опасности перекосов опорных поверхностей, выбирают резьбовые детали из пластичных сталей типа 10, 20, 30 и т. п.

12.1.2. Момент завинчивания, КПД и условие самоторможения. При рассмотрении сил в винтовой паре удобно резьбу развернуть по среднему диаметру в наклонную плоскость, а гайку заменить ползуном (рис. 12.5).

Угол подъема резьбы равен

Рис. 12.5. Силы взаимодействия между винтом и гайкой при

завинчивании

Сила взаимодействия наклонной плоскости с ползуном при относительном движении представляет собой равнодействующую F нормальной силы и силы трения. Следовательно, эта сила наклонена к нормали nn под углом трения j. В результате разложения равнодействующей силы F на окружную Ft и осевую , получаем

Угол подъема резьбы равен, (12.3)

где j — угол трения Угол подъема резьбы равен, f’- приведенный коэффициент трения в резьбе Угол подъема резьбы равен.

Момент Тзав завинчивания гайки или винта с головкой представляется суммой момента Тр в резьбе и момента Тт на торце гайки или головки винта.

Вращающий момент Тр, который необходимо приложить при завинчивания гайки (момент в резьбе), имеет вид

Угол подъема резьбы равен. (12.4)

Опорную поверхность гайки и головки винта представляют кольцевой с наружным диаметром, равным размеру под ключ гайки а и внутренним диаметром, равным диаметру отверстия под винт d. Тогда средний диаметр кольцевой поверхности составит Угол подъема резьбы равен.

Момент на торце гайки представим произведением

Угол подъема резьбы равен. (12.5)

Момент завинчивание запишем с учетом зависимостей (12.4) и (12.5)

Угол подъема резьбы равен. (12.6)

Для стандартной метрической резьбы средние значения y = 2о30’; j = 8о40’; dcp = 1.4×d; d2 = 0.9×d. Так как момент закручивания равен моменту на ключе

Угол подъема резьбы равен. (12.7)

Подставляя (12.7) в (12.6), получаем соотношение между осевой силой и силой на ключе Угол подъема резьбы равен.

Таким образом, выигрыш в силе весьма значителен. Поэтому при перезатяжки болтов и шпилек диаметром менее 12 мм имеется опасность срыва резьбы и разрушения их стержней. Например, болт М6 из Ст3 разрушается при усилии на рукоятке стандартного ключа 90…100 Н. Поэтому в ответственных случаях применяют специальные ключи с контролируемым моментом затяжки.

КПД резьбы определяют как отношение полезной работы на винте к затрачиваемой работе на ключе при повороте на произвольный угол. Для простоты и общности вывода удобно рассматривать поворот на малый угол dg, при котором силы даже в условиях затяжки крепежной резьбы можно считать постоянными. Тогда КПД собственно резьбы без учета трения на торце составит

Угол подъема резьбы равен, (12.8)

где dh осевое перемещение, соответствующее повороту на угол dg,

Угол подъема резьбы равен.

Подставляя в полученную зависимость (12.9) значение момента ТР на резьбе (12.4), получаем

Угол подъема резьбы равен. (12.9)

Для угла подъема y = 2о30’ и коэффициента трения f = 0.15 (j = 8о40’) КПД составляет h = 0.22.

КПД винта с учетом трения на торце гайки примет вид

Угол подъема резьбы равен. (12.10)

При отвинчивании момент получают, как и при завинчивании, при этом изменяется только знак угла подъема на противоположный

Угол подъема резьбы равен. (12.11)

Условие самоторможения следующие

Угол подъема резьбы равен, Угол подъема резьбы равен, Угол подъема резьбы равен. (12.12)

Для нормальной метрической резьбы с углом подъема y = 2о30’ самоторможение даже при отсутствии трения на торце гайки наступает при j > 2,30’, т. е. при коэффициенте трения f > 0,045. При наличии трения на торце гайки самоторможение наступит при коэффициенте трения f > 0,02.

Таким образом, при статических нагрузках имеются большие запасы надежности затяжки. Однако в условиях вибрационных нагрузок коэффициент и угол трения резко снижается, что может привести к ослаблению затяжки резьбы, во избежание которого и используются специальные стопорные устройства.

Предохранение резьбовых соединений от самоотвинчивания. Все крепежные резьбы удовлетворяют условию самоторможения даже без учета дополнительного трения на торце гайки или головки винта. Однако, как показывает опыт эксплуатации, при переменной или ударной нагрузке наблюдается ослабление резьбы. Поэтому необходимы специальные средства стопорения.

Используют следующие виды стопорения:

— специальными элементами – шплинтами, шайбами;

— пластическое деформирование или приварку после затяжки.

Взаимодействие между винтом и гайкой. Распределение осевой силы между витками резьбы винта и гайки было бы равномерной, если бы резьба изготовлялась абсолютно точно и податливость резьбы была бы значительно выше, чем податливость винта и гайки. В действительности ни то, ни другое условие не имеет место.

Читать также:  Отрезная машина по металлу своими руками

Задача распределения сил между витками резьбы винта и гайки является статически неопределимой. Для гайки с 10 витками эту задачу решил . На первый, наиболее нагруженный виток, приходится до 1/3 всей нагрузки, а на последний, 10-й виток резьбы гайки, приходится менее 1/100 общей силы. Деформации в

резьбе за счет погрешности профиля, контактные деформации и местные пластические деформации несколько снижают нагрузку на 1-й виток резьбы гайки.

При столь резкой неравномерности нагружения витков нет необходимости делать высоту гайки большей, чем 10 шагов резьбы.

На сегодняшний день в сфере машиностроения часто применяются различные резьбовые соединения. Резьба это сложный технологический процесс требующий определенных навыков и умений. Для нарезания резьбы необходимо уметь настраивать станок, подбирать, затачивать и устанавливать режущий инструмент и конечно же уметь пользоваться резьбовыми измерительными приборами. В настоящее время часто применяется метрическая резьба (имеет треугольный профиль). Начнем все по порядку и для начала разберем общие понятия:

Профиль резьбы

Профиль метрической резьбы похож на равносторонний треугольник с углом 60°. Вершинки резьбы могут быть острыми и слегка срезанными, это зависит от заточки резца и глубины резания. Не рекомендуется делать метрическую резьбу с другим углом, так как это будет являться нарушения требований к метрической резьбе в частности к ее профилю. Видоизмененный профиль резьбы влияет на резьбовое соединение деталей например винт и гайка.

Угол подъема резьбы равен Угол подъема резьбы равен

Профиль наружной резьбы рис. слева и внутренней резьбы рис. справа

Угол подъема резьбы равен

Угол подъема резьбы равен

Профиль метрической и профиль цилиндрической резьбы и ее развертывание

  • d, d1, d2 – наружный, внутренний и средний диаметр болта
  • D, D1, D2 – наружный, внутренний и средний диаметр гайки
  • р – шаг; ω – угол подъема

Шаг резьбы

Шаг резьбы – это расстояние между двумя вершинками резьбы измеренными вдоль оси

Угол подъема резьбы – это угол, образованный направлением выступа резьбы и плоскостью, перпендикулярной к оси резьбы. Определяется по формуле:

Ход резьбы – однозаходная резьба равен ее шагу. Если резьба имеет несколько заходов k , то ход резьбы рассчитывается по формуле: за один оборот гайка переместится в осевом направлении в k раз дальше.

Классификация резьб

По виду поверхности: цилиндрические и конические.

По признаку расположения резьбы: наружные и внутренние.

По направлению винтового выступа резьбы: правые и левые.

По числу заходов: однозаходные – образованные одним выступом и многозаходные — образованные двумя и более выступами резьбы.

Треугольные
ТрапецеидальныеУпорныеТреугольные для трубной
и цилиндрической резьбы
Угол подъема резьбы равенУгол подъема резьбы равенУгол подъема резьбы равенУгол подъема резьбы равен

По назначению: крепежные и ходовые

По системе размерности: метрические α =60° и дюймовые α =55°.

Исходный профиль метрической резьбы это треугольник высотой Р с углом α 60°. Вершина треугольника срезана, впадина профиля резьбы имеет плоскую или закругленную форму. Закругленная форма предпочтительней. Метрическая резьба выполняется с крупным и мелким шагом. Диаметры и шаги метрической резьбы оговорены в ГОСТ 8724-81, а профиль и его размеры ГОСТ 9150-81. Размеры дюймовой резьбы выражены в дюймах (один дюйм равен 25,4мм), исходный профиль дюймовой резьбы это треугольник с углом при вершине α =55°.

Основными параметрами резьбы (рис. 5.2) являются:

3) угол профиля (α);

5) угол подъема (ψ).

Диаметры винта, как охватываемой детали, обозначаются малыми буквами (d), диаметры гайки, как охватывающей детали – большими (D). Номинальные значения одноименных диаметров равны; отличие – в допустимых отклонениях. На поверхности воображаемого цилиндра диаметром d2 ширины витков и впадин резьбы одинаковы.

Профиль резьбы – это профиль выступа и канавки резьбы в плоскости ее осевого сечения.

Угол профиля (α) – угол между смежными боковыми сторонами резьбы осевого сечения.

Профиль резьбы характеризуется также следующими параметрами:

· высотой исходного треугольника резьбы (H), т. е. треугольника, вершины которого образуются точками пересечения продолженных боковых сторон профиля резьбы;

· рабочей высотой профиля резьбы (H1), равной длине проекций участка взаимного перекрытия профилей сопрягаемых наружной и внутренней резьб на перпендикуляр к оси резьбы.

Рис. 5.2. Параметры резьбы

Шаг резьбы (p) – расстояние по линии, параллельной оси резьбы между средними точками ближайших одноименных боковых сторон резьбы, лежащими в одной осевой плоскости по одну сторону от оси резьбы.

Для многозаходных резьб вводят дополнительный термин – «ход винта» ( , где – число заходов) – это поступательное осевое перемещение винта за один оборот в неподвижной гайке или относительное осевое перемещение гайки за один оборот. Для однозаходных резьб:

Угол подъема резьбы (ψ) – угол подъема развертки винтовой линии по среднему диаметру (рис. 5.3):

Все геометрические параметры резьб и допуски на их размеры стандартизированы.

По назначению резьбы разделяют на следующие группы:

Рис. 5.3. Развертка винтовой линии по среднему диаметру

1) крепежные резьбы, предназначенные для скрепления деталей. Их выполняют, как правило, треугольного профиля. Это вызвано повышенным трением, обеспечивающим меньшую опасность ослабления затянутой резьбы; повышенной прочностью резьбы; удобством изготовления;

Читать также:  Как правильно разбавить краску для краскопульта

2) крепежно-уплотняющие резьбы, служащие, как для скрепления деталей, так и для предохранения от вытекания жидкости (в соединениях трубопроводов и в арматуре). Эти резьбы по указанным причинам выполняют также треугольного профиля, но без радиальных зазоров и с плавными закруглениями;

3) резьбы для передачи движения, используемые в ходовых и грузовых винтах. Для уменьшения трения эти резьбы выполняют трапецеидальными с симметричным профилем и с несимметричным профилем (упорные), а иногда с прямоугольным профилем. Упорные резьбы предназначены для восприятия больших осевых сил, действующих в одном направлении.

Приведенное деление резьб не является строгим. Например, резьбы треугольного профиля иногда используют для особо точных ходовых винтов с малым шагом, а упорные резьбы – в качестве крепежных.

Резьбы из-за зазоров, как правило, не могут быть использованы в качестве центрирующих элементов.

Выбор профиля резьбы определяется многими факторами, важнейшими из которых являются прочность, технологичность и силы трения в резьбе. Например, резьбы винтовых механизмов должны быть с малыми силами трения для повышения коэффициента полезного действия (КПД) и уменьшения износа. Прочность во многих случаях не является для них основным критерием, определяющим размеры винтовой пары.

В зависимости от профиля различают следующие резьбы:

Метрическая резьба с треугольным профилем (см. рис. 5.2) является основной крепежной резьбой. Метрические резьбы разделяют на резьбы с крупными и мелкими шагами. За основную принята резьба с крупным шагом, статическая несущая способность которой выше по сравнению с резьбой с мелким шагом, влияние на прочность погрешностей изготовления и износа меньше.

Метрические резьбы с мелким шагом используются в следующих случаях:

1) для динамически нагруженных деталей и деталей, диаметры которых в основном определяются напряжения изгиба и кручения (валы);

2) для полых тонкостенных деталей;

3) детали, у которых резьба применяется для регулировки;

4) когда применение мелких резьб облегчает стопорение, позволяет уменьшить перепады диаметров валов и пр.

Метрическую резьбу с крупным шагом обозначают буквой М и числом, выражающим диаметр резьбы в миллиметрах, например, М20. Для метрической резьбы с мелким шагом дополнительно указывают шаг в миллиметрах, например, М20×1,5.

Трубная резьба имеет также треугольный профиль, но в отличие от метрической резьбы вершины и впадины ее скруглены. Резьбы данных типов применяют для герметичного соединения труб и арматуры трубопроводов в диапазоне условных размеров от 1/16″ до 6″. Трубная резьба выполняется с мелким шагом и без зазоров по выступам и впадинам для лучшего уплотнения. За основной размер, характеризующий резьбу и указываемый в обозначении резьбы, принят условный внутренний диаметр трубы.

Круглая резьба изготавливается с углом профиля α = 60°. Профиль данной резьбы состоит из дуг, связанных короткими участками прямой. Большие радиусы закруглений исключают значительную концентрацию напряжений. Попадающие в резьбу загрязняющие частицы выжимаются в зазоры. Резьбы данных типов в основном применяют для винтов, подверженных большим динамическим напряжениям, а также часто завинчиваемых и отвинчиваемых в загрязненной среде (в пожарной арматуре, вагонных стяжках).

Трапецеидальная резьба является основной резьбой для передач винт-гайка. Она имеет меньшие потери на трение по сравнению с треугольной резьбой, удобна в изготовлении и более прочна по сравнению с прямоугольной резьбой. При необходимости она допускает выборку зазоров радиальным сближением при выполнении гайки разъемной по диаметральной плоскости.

Трапецеидальная резьба имеет угол профиля 30°, рабочую высоту профиля H1 = 0,5p, средний диаметр d2 = d – 0,5p, зазор от 0,15 до 1 мм в зависимости от диаметра резьбы.

Трапецеидальная резьба стандартизирована в диапазоне диаметров от 8 до 640 мм, предусмотрена возможность применения резьб с мелкими, средними и крупными шагами.

Упорную резьбу используют для винтов с большой односторонней осевой нагрузкой в прессах, нажимных устройствах прокатных станов, в грузовых крюках и т. д. Профиль витков несимметричный трапецеидальный. Угол наклона рабочей стороны профиля для повышения КПД выбран равным 3° (резьба с углом наклона профиля 0° неудобна в изготовлении), угол наклона нерабочей стороны профиля – 30°, предусмотрен значительный радиус закругления впадины для снижения концентрации напряжения. Рабочая высота профиля H1 = 0,75p.

Усиленные упорные резьбы имеют угол наклона нерабочей стороны профиля 45°, что обеспечивает значительное снижение концентрации напряжения за счет повышения напряжений смятия. Сопротивление усталости у них повышено в 1,5 раза.

Конические резьбы обеспечивают непроницаемость без специальных уплотнений. Их применяют для соединения труб, установки пробок, масленок и т. п. Непроницаемость достигается плотным прилеганием профилей по вершинам. Затяжкой конической резьбы можно компенсировать износ и создать требуемый натяг, эти резьбы обеспечивают быстрое завинчивание и отвинчивание.

Срочно?
Закажи у профессионала, через форму заявки
8 (800) 100-77-13 с 7.00 до 22.00

«>

Оставить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *