Углеродный эквивалент стали 09г2с

Одним из главных требований при сварке является обеспечение равнопрочности основного металла и металла шва, зависит от его структуры, которая определяется химическим составом, режимом сварки, термической обработки. Химический состав металла шва при сварке рассматриваемых сталей не значительно отличается от состава основного металла. Это различие сводится к снижению содержания в металле шва углерода, для предупреждения образования закалочных структур, при повышении скорости охлаждения.

Возможное снижение прочности шва компенсируется легированием металла через проволоку.

Свариваемость сталей определяют по эквивалентному содержанию углерода :

Согласно этой методике полный эквивалент углерода Сэ определяют по формуле (1)

где Сх – химический эквивалент углерода,

Ср – размерный эквивалент углерода.

Углеродный эквивалент стали 09г2с(2)

Углеродный эквивалент стали 09г2с

(3) где S – толщина свариваемой стали, мм.

Углеродный эквивалент стали 09г2сТогда полный эквивалент электрода

Углеродный эквивалент стали 09г2сТемпература подогрева

Углеродный эквивалент стали 09г2сСвариваемость стали 09Г2С определяется по формулам (6-7):

Углеродный эквивалент стали 09г2с
  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 266
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 602
  • БГУ 153
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 962
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 119
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1967
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 300
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 409
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 497
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 130
  • ИжГТУ 143
  • КемГППК 171
  • КемГУ 507
  • КГМТУ 269
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2909
  • КрасГАУ 370
  • КрасГМУ 630
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 139
  • КубГУ 107
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 367
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 330
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 636
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 454
  • НИУ МЭИ 641
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 212
  • НУК им. Макарова 542
  • НВ 777
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1992
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 301
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 119
  • РАНХиГС 186
  • РОАТ МИИТ 608
  • РТА 243
  • РГГМУ 118
  • РГПУ им. Герцена 124
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 122
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 130
  • СПбГАСУ 318
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 147
  • СПбГПУ 1598
  • СПбГТИ (ТУ) 292
  • СПбГТУРП 235
  • СПбГУ 582
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 193
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 380
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1655
  • СибГТУ 946
  • СГУПС 1513
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2423
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 324
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 306

Полный список ВУЗов

Чтобы распечатать файл, скачайте его (в формате Word).

Углеродный эквивалент стали 09г2с
Углеродный эквивалент стали 09г2с
Сталь марки 09Г2С (отечественные аналоги 09Г2, 09Г2ДТ, 09Г2Т, 10Г2С)
Класс: Сталь конструкционная низколегированная для сварных конструкций, марка стали 09Г2С широко применяется при производстве труб и другого металлопроката.
Использование в промышленности: различные детали и элементы сварных металлоконструкций, работающих при температуре от —70 до +425°С под давлением.
Вид поставки: сортовой прокат, в том числе фасонный: ГОСТ 19281-73, ГОСТ 2590-2006, ГОСТ 2591-2006, ГОСТ 8239-89, ГОСТ 8240-97. Лист толстый ГОСТ 19282-73, ГОСТ 5520-79, ГОСТ 5521-93, ГОСТ 19903-74. Лист тонкий ГОСТ 17066-94, ГОСТ 19904-90. Полоса ГОСТ 103-2006, ГОСТ 82-70. Поковки и кованные заготовки ГОСТ 1133-71.
Расшифровка марки 09Г2С: Обозначение 09Г2С означает, что в стали присутствует 0,09% углерода, поскольку 09 идет до букв, далее следует буква «Г» которая означает марганец, а цифра 2 – процентное содержание до 2% марганца. Далее следует буква «С», которая означает кремний, но поскольку после С цифры нет – это означает содержание кремния менее 1%. Таким образом, расшифровка 09Г2С означает, что перед нами сталь имеющая 0,09% углерода, до 2% марганца, и менее 1% кремния и поскольку общее кол-во добавок колеблется в районе 2,5% то это низколегированная сталь.
Читать также:  Захват для вертикального подъема листа
Химический состав в % стали марки 09Г2С
Cдо 0,12Углеродный эквивалент стали 09г2с
Si0,5 — 0,8
Mn1,3 — 1,7
Niдо 0,3
Sдо 0,04
Pдо 0,035
Crдо 0,3
Nдо 0,008
Cuдо 0,3
Asдо 0,08
Fe
Зарубежные аналоги марки стали 09Г2С
Германия13Mn6, 9MnSi5
ЯпонияSB49
Китай12Mn
Болгария09G2S
ВенгрияVH2
Румыния9SiMn16
Свойства и полезная информация:
Читать также:  Измельчитель травы и веток для дачи

Свойства стали 09Г2С: сталь 09Г2 после обработки на двухфазную структуру имеет повышенный предел выносливости; одновременно примерно в 3—3,5 раза увеличивается число циклов до разрушения в области малоцикловой усталости.

Упрочнение ДФМС(дфухфазные ферритно-мартенситные стали) создают участки мартенсита: каждый 1 % мартенситной составляющей в структуре повышает временное сопротивление разрыву примерно на 10 МПа независимо от прочности и геометрии мартенситной фазы. Разобщенность мелких участков мартенсита и высокая пластичность феррита значительно облегчают начальную пластическую деформацию. Характерный признак ферритно-мартенситных сталей — отсутствие на диаграмме растяжения плошадки текучести. При одинаковом значении общего ( δобщ) и равномерного ( δр) удлинения ДФМС обладают большей прочностью и более низким отношением σ0,2/ σв (0,4—0,6), чем обычные низколегированные стали. При этом сопротивление малым пластическим деформациям ( σ0,2) у ДФМС ниже, чем у сталей с ферритно-перлитной структурой.

При всех уровнях прочности все показатели технологической пластичности ДФМС ( σ0,2/ σв, δр, δобщ, вытяжка по Эриксену, прогиб, высота стаканчика и т. д.), кроме раздачи отверстия, превосходят аналогичные показатели обычных сталей.

Повышенная технологическая пластичность ДФМС позволяет применять их для листовой штамповки деталей достаточно сложной конфигурации, что является преимуществом этих сталей перед другими высокопрочными сталями.

Углеродный эквивалент стали 09г2с

Сопротивление коррозии ДФМС находится на уровне сопротивления коррозии сталей для глубокой вытяжки.

ДФМС удовлетворительно свариваются методом точечной сварки. Предел выносливости при знакопеременном изгибе составляет для сварного шва и основного металла ( σв = 550 МПа) соответственно 317 и 350 МПа, т. е. 50 и 60 % ов основного металла.

В случае применения ДФМС для деталей массивных сечений, когда необходимо обеспечить достаточную прокаливаемость, целесообразно использовать составы с повышенным содержанием марганца или с добавками хрома, бора и т. д.

Экономическая эффективность применения ДФМС, которые дороже низкоуглеродистых сталей, определяется экономией массы деталей (на 20—25%). Применение ДФМС в некоторых случаях позволяет исключить упрочняющую термическую обработку деталей, например высокопрочных крепежный изделий, получаемых методом холодной высадки.

Краткие обозначения:
σв— временное сопротивление разрыву (предел прочности при растяжении), МПа ε— относительная осадка при появлении первой трещины, %
σ0,05— предел упругости, МПа Jк — предел прочности при кручении, максимальное касательное напряжение, МПа
σ0,2— предел текучести условный, МПаσизг— предел прочности при изгибе, МПа
δ5,δ4,δ10— относительное удлинение после разрыва, %σ-1— предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа
σсж0,05 и σсж— предел текучести при сжатии, МПа J-1 — предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа
ν— относительный сдвиг, % n— количество циклов нагружения
s в— предел кратковременной прочности, МПаR и ρ— удельное электросопротивление, Ом·м
ψ— относительное сужение, %E— модуль упругости нормальный, ГПа
KCU и KCV— ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см 2 T— температура, при которой получены свойства, Град
s T— предел пропорциональности (предел текучести для остаточной деформации), МПа l и λ— коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С)
HB— твердость по БринеллюC— удельная теплоемкость материала (диапазон 20 o — T ), [Дж/(кг·град)]
HV— твердость по Виккерсу pn и r— плотность кг/м 3
HRCэ— твердость по Роквеллу, шкала Са— коэффициент температурного (линейного) расширения (диапазон 20 o — T ), 1/°С
HRB— твердость по Роквеллу, шкала Вσ t Т— предел длительной прочности, МПа
HSD— твердость по ШоруG— модуль упругости при сдвиге кручением, ГПа
Читать также:  Кованная вешалка для одежды настенная

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Сварка — один из методов создания неразъемных металлических конструкций. Прочность шва, образующегося в местах соединения составных частей, зависит от такой характеристики стали, как «свариваемость».

Классификация стали по степени ее свариваемости

Сталь представлена различными группами марок, обладающими своими физико-химическими свойствами. Вследствие этого, у металлических изделий неодинаковый показатель свариваемости. В зависимости от этого параметра железо-углеродистые сплавы подразделяется на четыре категории.

  1. Хорошая
    При сварке получается качественный шов. Металл не требует предварительного нагрева для проведения работ, а сами они проходят в обычном режиме и с применением всех известных технологий.
  2. Удовлетворительная
    Чтобы создать качественное сварное соединение, стальные изделия необходимо подготовить, то есть разогреть.
  3. Ограниченная
    Перед сваркой металлические изделия сначала разогревают, а после их соединения подвергают еще и термической обработке.
  4. Плохая
    Такая сталь характеризуется тем, что во время сварки (после нее) на поверхности образуются трещины, а также могут возникать «закалочные» структуры, снижающие прочность и надежность соединения, делающие его хрупким.

Методы расчета углеродного эквивалента

Свойства стали вообще зависят от присутствия в сплаве железа и углерода других металлов. Зная их содержание, с помощью эмпирической формулы не составляет труда рассчитать значение так называемого углеродного эквивалента (Сэ). Эта величина позволяет определить, каких результатов ждать от сварки металлических изделий.

В России для оценки сварных характеристик проката, идущего на создание конструкций, используют формулу, утвержденную ГОСТ ГОСТ 27772-88 :

В Европе для расчетов применяется следующая зависимость:

В Японии такая методика определения углеродного эквивалента:

где С, P, Cr, Mn, Cu, V, Si, Ni, Мо — массовые доли (в %) углерода, фосфора, хрома, марганца, меди, ванадия, кремния, никеля, молибдена.

Сталь считается не склонной к трещинообразованию, если значение углеродного эквивалента «С» меньше 0,45%. В противном случае, когда уже существует вероятность их появления, перед сваркой части, требующие соединения, необходимо прогреть.

Вычисление значения твердости в зоне термического влияния

Следующий параметр, на который следует обратить внимание, — твердость зоны термического влияния (ЗТВ). Так называют участок изделия, который расположен возле образовавшегося шва. В этой области под воздействием температуры происходят фазовые превращения с изменением внутренней структуры металла. Порой это чревато тем, что сталь становится хрупкой.

Твердость металла в этой зоне определяют по методу Виккерса. Если ее значения лежат в диапазоне 350-400 по специальной HV-шкале, то на участке ЗТВ точно находятся продукты распада аустенита (одна из модификаций железа и его сплавов), как раз и инициирующие образование холодных трещин.

Максимальное значение твердости углеродистой и низколегированной стали вычисляют, располагая данными о химическом составе металла, по этой формуле:

где С, Mn, Si, Cr, Ni — массовые доли (в процентах) химических элементов.

Определение чувствительности стали к образованию холодных трещин

Холодные трещины образуются после сварки из-за растягивающих остаточных напряжений. Их сила зависит от жесткости получившейся конструкции и толщины шва. Определить ее значение позволяет коэффициент интенсивности жесткости — К. Он характеризует приложенное усилие, которое на 1 мм раскрывает зазор, оказавшийся в сварном соединении шириной так же 1 мм. Подсчитывается он так:

где Kq — это константа, которую принято считать равной 69, S — толщина стального листа (в мм). Важно отметить, что соотношение справедливо только, если толщина листа не превышает 150 мм.

Насколько сталь может быть подвержена образованию холодных трещин, помогает узнать параметрическое уравнение:

где Рш — коэффициент «охрупчивания» (так называют процесс, когда из вязкого состояния металл переходит в хрупкое), Н — количество диффузионного водорода, К — коэффициент интенсивности жесткости.

Значение Рш находится при решении уравнения Бес-Сио:

Результаты неоднократно проведенных исследований помогли установить порог значения, при котором проявляется чувствительности стали к образованию холодных трещин. Это случается, если значение Pw превышает 0,286.

Способы устранения холодных трещин при сварке

Образование трещин ухудшает поверхность металла и, соответственно, уменьшает прочность готовой конструкции. Предотвратить их появление поможет следующее:

  • пересмотр (изменение) конструктивных решений, который позволит снизить жесткость в области сварного узла;
  • тщательный контроль за ходом проведения сварки при оптимальном режиме поможет уменьшить содержание диффузионного водорода;
  • проведение сварочных работ с соблюдением особых параметров, которые воспрепятствуют охрупчиванию металла и будут содействовать удалению из шва диффузионное водорода.

Из перечисленных способов, снижения вероятности появления холодных трещин при проведении сварочных работ, самый востребованный — последний.

«>

Оставить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *