Треугольник с круглыми углами

Выполнил: студент группы БПМ1701

Проверил: доцент кафедры ТВ и ПМ

2.1 Основные геометрические характеристики…………………………………………….4-5

2.2 Свойства, общие для всех фигур постоянной ширины………………………….5

2.3.3 Наименьшая центральная симметрия………………………………………….6-7

Изучение важных математических задач ,понятий ,теорем ,гипотез и парадоксов , имеющих прикладное значение .

1.Написать доклад по заданной теме

2.Оформить доклад в соответствии с требованиями и с учетом ГОСТ 7.32-2001.Отчет о научно-исследовательской работе. Структура и правила оформления. Набор формул вручную с помощью редактора MathType.

3.Список литературы в соответствии ГОСТ 7.1-2003.Библиографическая запись .Библиографическая описание. Общие требования и правила составления. ГОСТ 7.82-2001 . Библиографическая описание электронных

Треуго́льник Рёло́ (рис.1) представляет собой область пересечения трёх равных кругов с центрами в вершинах правильного треугольника и радиусами, равными его стороне. Негладкая замкнутая кривая, ограничивающая эту фигуру, также называется треугольником Рёло.

Треугольник Рёло является простейшей после круга фигурой постоянной ширины. То есть если к треугольнику Рёло провести пару параллельных опорных прямых, то независимо от выбранного направления расстояние между ними будет постоянным. Это расстояние называется шириной треугольника Рёло.

Среди прочих фигур постоянной ширины треугольник Рёло выделяется рядом экстремальных свойств: наименьшей площадью,наименьшим возможным углом при вершине, наименьшей симметричностью относительно центра. Треугольник получил распространение в технике — на его основе были созданы кулачковые и грейферные механизмы, роторно-поршневой двигатель Ванкеля и даже дрели, позволяющие сверлить (фрезеровать) квадратные отверстия.

Название фигуры происходит от фамилии немецкого механика Франца Рёло. Он, вероятно, был первым, кто исследовал свойства этого треугольника; также он использовал его в своих механизмах.

Треугольник с круглыми углами

Рёло не является первооткрывателем этой фигуры, хотя он и подробно исследовал её. В частности, он рассматривал вопрос о том, сколько контактов (в кинематических парах) необходимо, чтобы предотвратить движение плоской фигуры, и на примере искривлённого треугольника, вписанного в квадрат, показал, что даже трёх контактов может быть недостаточно для того, чтобы фигура не вращалась.

Некоторые математики считают, что первым продемонстрировал идею треугольника из равных дуг окружности Леонард Эйлер в XVIII веке. Тем не менее, подобная фигура встречается и раньше, в XV веке: её использовал в своих рукописях Леонардо да Винчи. Треугольник Рёло есть в его манускриптах A и B, хранящихся в Институте Франции, а также в Мадридском кодексе

Примерно в 1514 году Леонардо да Винчи создал одну из первых в своём роде карт мира. Поверхность земного шара на ней была разделена экватором и двумя меридианами (угол между плоскостями этих меридианов равен 90°) на восемь сферических треугольников, которые были показаны на плоскости карты треугольниками Рёло, собранными по четыре вокруг полюсов.

Ещё раньше, в XIII веке, создатели церкви Богоматери в Брюгге использовали треугольник Рёло в качестве формы для некоторых окон.

1. Введение 3 стр.

2. Основная часть 5 стр.

3. Эксперимент 9 стр.

4. Заключение 11 стр.

5. Литература 12 стр.

6. Приложения 13 стр.

Введение

Проблема: При изучении темы «треугольники» уроках геометрии я узнал, что среди них можно выделить: равнобедренные ,равносторонние, прямоугольные.

Однако, посмотрев телепередачу «Галилео», я с удивлением обнаружил существование «круглого» треугольника

Для того, чтобы выяснить, знают ли ученики нашей школы о «круглом» треугольнике, aмною был проведен опрос. Было опрошено 70 учащихся 7-11 классов. (Анкета. Приложение 1.)Опрос показал, что два человека имеют представление о треугольнике, а желают узнать о таком треугольнике почти 92% опрошенных. Таким образом, понятно, что учащиеся желают узнать для себя новый материал, который не изучается в школьной программе.

Фигура треугольника Рёло меня заинтересовала, и я решил разобраться в его свойствах и способах применения.

Актуальность:

Исторически геометрия начиналась с треугольника, поэтому треугольник не только символ геометрии, но и атом геометрии. Постоянно открываются все новые и новые свойства треугольника. Чтобы рассказать обо всех известных его свойствах, потребуется том величиной в несколько тысяч страниц.

Геометрия треугольника дает возможность почувствовать красоту математики вообще и может стать для кого-то началом пути в «большую науку». Каждый любитель геометрии треугольника имеет возможность открыть нечто новое и пополнить её сокровищницу собственной драгоценной находкой, ибо геометрия поистине неисчерпаема.

В современном мире при быстро развивающихся технологиях нельзя обойти фигуру постоянной ширины – треугольника Рёло, позволяющего сократить затраты при производстве, к примеру, при конструировании деталей.

Практическая значимость моего исследования заключается в том, что удивительные свойства треугольника Рёло позволяют сделать новые открытия в разных областях жизнедеятельности человека: механике, искусстве и др.

Читать также:  Сколько стоит подслушивающее устройство жучок

Объект исследования: треугольник Рёло

Предмет исследования: практическое применение свойствтреугольника Рёло.

Цель: доказать, чтогеометрия необходима в практической жизни, знание этой науки раскрывает возможности деятельности человека.

Задачи:

1. Узнать, что такое треугольник Рёло?

2. Выделить его основные свойства.

3. Определить, где встречается треугольник Рёло, применение его свойств.

Гипотеза: У треугольника Рёло есть свои уникальные свойства, которые могут использоваться в разных областях жизнедеятельности человека.

Методы работы: изучение научной литературы, опрос, наблюдение, анализ, эксперимент.

Основная часть.

Изучив научную литературу в Интернет-ресурсе, я узнал, что название фигуры происходит от фамилии немецкого механика Франца Рёло (1829 – 1905) Наверное, именно он был первым, кто исследовал свойства этого треугольника; и использовал его в своих механизмах. В 1852 г. он окончил политехникум в Карлсруэ, с 1856г. был профессором Политехнического института в Цюрихе, а в 1864—1896 г. профессором Промышленного института (позже — Высшая техническая школа) в Берлине. В 1875 г. Франц Рёло впервые четко дал определение кинематической пары, кинематической цепи и механизма как кинематической цепи принуждённого движения; предложил способ преобразования механизмов путём изменения стойки и путём изменения конструкций кинематических пар. Впервые поставил и пытался решить проблему эстетичности красоты технических объектов, поэтому, современники Рёло называли его поэтом в технике. Творчество Рёло оказало значительное влияние на последующие исследования по теории механизмов. (Приложение 2)

Рёло не является первооткрывателем этой фигуры, хотя он и подробно исследовал её. Но он рассматривал вопрос о том, сколько контактов (в кинематических парах) необходимо, чтобы предотвратить движение плоской фигуры, и на примере искривлённого треугольника, вписанного в квадрат, показал, что даже трёх контактов может быть недостаточно для того, чтобы фигура не вращалась.

Некоторые математики считают, что первым продемонстрировал идею треугольника из равных дуг окружности Леонард Эйлер в XVIII веке.

Хотя эта фигура встречается и раньше, в XV веке: её использовал в своих рукописях Леонардо да Винчи. Треугольник Рёло есть в его манускриптах A и B, хранящихся в Институте Франции, а также в Мадридском кодексе.

Итак, что же такое «круглый» треугольник?

Треугольник Рёло представляет собой область пересечения трех равных кругов с центрами в вершинах правильного треугольника и радиусами, равными его стороне. Его можно построить с помощью одного только циркуля, не прибегая к линейке. Это построение сводиться к последовательному проведению трех равных окружностей. Нужно провести две окружности с одинаковым радиусом, но так, чтобы центр второй совпадал с одной из точек первой (кроме центра). Проводим третью окружность, так что бы её центр совпадал с точкой пересечения первых окружностей (Приложение 3). Область, которая принадлежит всем трем кругам и есть треугольник Рёло.

Каковы же свойства этой фигуры?

Треугольник Рёло, является фигурой постоянной ширины. Это значит, что если провести две параллельные прямые на некотором расстоянии, то фигура при качении (когда фигура будет катиться) будет касаться обеих прямых постоянно. Расстояние между ними и будет фигура постоянной ширины. Простейшей такой фигурой будет всем известный круг, хотя таких фигур немало. Среди этих фигур наименьшая площадь именно у треугольника Рёло. Это утверждение носит название теоремы Бляшке — Лебега. (по фамилиям немецкого геометра Вильгельма Бляшке и французского математика Анри Лебега) К примеру, если его вписать в круг, то разница очевидна (Приложение 4). Площадь соответствующего треугольника Рёло меньше на ≈ 10,27%

Треугольник Рёло является плоскойвыпуклойгеометрической фигурой.

Через каждую вершину треугольника Рёло, в отличие от остальных его граничных точек, проходит не одна опорная прямая, а бесконечное множество опорных прямых. Пересекаясь в вершине, они образуют «пучок». Угол между крайними прямыми этого «пучка» называется углом при вершине. Для фигур постоянной ширины угол при вершинах не может быть меньше 120°. Единственная фигура постоянной ширины, имеющая углы, равные в точности 120° — это треугольник Рёло.

Любую фигуру постоянной ширины можно вписать вквадрат со стороной, равной ширине фигуры, причём направление сторон квадрата может быть выбрано произвольно. Треугольник Рёло — не исключение, он вписан в квадрат и может вращаться в нём, постоянно касаясь всех четырёх сторон. (Приложение 5)

Каждая вершина треугольника при его вращении «проходит» почти весь периметр квадрата, отклоняясь от этой траектории лишь в углах.

Этими свойствами обусловлено практическое применение треугольника Рёло. Разница с площадью квадрата составляет ≈1,2 %, поэтому на основе треугольника Рёло создаютсвёрла, позволяющие получать у треугольника почти квадратные отверстия. Отличие таких отверстий от квадрата состоит лишь в немного скруглённых углах. Другая особенность подобного сверла заключается в том, что его центр при вращении не остаётся на месте, как это происходит в случае традиционных спиральных свёрл, а описывает кривую, состоящую из четырёх дуг эллипсов. Поэтому патрон, в котором зажато сверло, не должен препятствовать этому движению.(Приложение 6)

Читать также:  Чертеж шиномонтажного станка своими руками

Впервые сделать подобную конструкцию удалось Гарри Уаттсу, английскому инженеру, работавшему в США.

Треугольник Рёло используется и в автомобильных двигателях. Их называют роторно-поршневыми. Первым такой двигатель создал в 1957 г. немецкий инженер Ф. Ванкель. Ротор этого двигателя выполнен в виде треугольника Рёло. Он вращается внутри камеры. Вал ротора жёстко соединён с зубчатым колесом, которое сцеплено с неподвижной шестернёй. Такой трёхгранный ротор обкатывается вокруг шестерни, всё время касаясь вершинами внутренних стенок двигателя и образуя три области переменного объёма, каждая из которых по очереди является камерой сгорания. Благодаря этому двигатель выполняет три полных рабочих цикла за один оборот.(Приложение 7)

Двигатель Ванкеля позволяет осуществить любой четырёхтактный термодинамический цикл без применения механизма газораспределения. Смесеобразование, зажигание, смазка, охлаждение и пуск в нём принципиально такие же, как у обычных поршневых двигателей внутреннего сгорания.

Треугольник использовался в грейферном механизме в кинопроекторах. Двигатели дают равномерное вращение оси, а чтобы на экране было четкое изображение, пленку мимо объектива надо протянуть на один кадр, дать ей постоять, потом опять резко протянуть и так 18 раз в секунду. Именно эту задачу решает грейферный механизм.(Приложение 8,9 )

Треугольник Рёло широко применяется в кулачковых механизмах швейных машин зигзагообразной строчки.

В качестве кулачка треугольник Рёло использовали немецкие часовые мастера в механизме наручных часов A. Lange & Söhne «Lange 31»

Треугольник Рёло — распространённая форма медиатора— тонкой пластинки, предназначенной для приведения в состояние колебания струн щипковых музыкальных инструментов.

В форме треугольника Рёло можно изготавливатькрышки для люков— благодаря постоянной ширине они не могут провалиться в люк(так же люки использовались и в Сан — Франциско).(Приложение 10 )

В 1514 г. Леонардо да Винчи создал одну из первых в своём роде карт мира. Поверхность земного шара на ней была разделена экватором и двумя меридианами (угол между плоскостями этих меридианов равен 90°) на восемь сферических треугольников, которые были показаны на плоскости карты треугольниками Рёло, собранными по четыре вокруг полюсов. (Приложение 11)

Форма треугольника Рёло используется и в архитектурных целях. Конструкция из двух его дуг образует характерную для готического стиля стрельчатую арку, однако целиком он встречается в готических сооружениях довольно редко. Окна в форме треугольника Рёло можно обнаружить в церкви Богоматери в Брюгге, а так же в шотландской церкви в Аделаиде. Как элемент орнамента он встречается на оконных решетках аббатства в швейцарской коммуне Отрив.

Треугольник Рёло используют и в архитектуре, не принадлежащей к готическому стилю. Например, построенная в 2006 году в Кёльне 103-метровая башня под названием «Кёльнский треугольник» в сечении представляет собой именно эту фигуру. (Приложение 12,13,14)

Треугольник Рёло используется в изготовлении монет . Так уже не один, а несколько, объединенных в семиугольник.

Среди всех многоугольников Рёло с фиксированным числом сторон и одинаковой шириной правильные многоугольники ограничивают наибольшую площадь.

Форма таких многоугольников используется в монетном деле: монеты ряда стран. Например, монет 20 и 50 пенсов Великобритании выполнены в виде правильного семиугольника Рёло. Существует изготовленный китайским офицером велосипед, колёса которого имеют форму правильных треугольника и пятиугольника Рёло. (Приложение 15)

В научно-фантастическом рассказе Пола Андерсона «Треугольное колесо» экипаж землян совершил аварийную посадку на планете, население которой не использовало колёса, так как всё круглое находилось под религиозным запретом. В сотнях километров от места посадки предыдущая земная экспедиция оставила склад с запасными частями, но перенести оттуда необходимый для корабля двухтонный атомный генератор без каких-либо механизмов было невозможно. В итоге землянам удалось соблюсти табу и перевезти генератор, используя катки с сечением в виде треугольника Рёло.

Эксперимент

Тема: «Изготовление катка с сечением в виде треугольника Рёло»

Цель: исследование практического выполнения и применения свойств треугольника Рёло на примере катка; может ли треугольник Рёло быть круглым и использоваться для перемещения грузов

Читать также:  Насадка для монтажного пистолета

Строгие формы вроде квадрата, прямоугольника и круга прочно вошли в обиход – это базовые очертания, которые используются при строительстве и отделке зданий, а также в ландшафтном дизайне. Но приверженцы нестандартных форм выбирают архитектурные стили, которые в некоторой степени дают свободу самовыражения.

В частности, в готической архитектуре (и не только) применяется кривая, называемая треугольником Рёло. Немецкий ученый Франц Рёло жил в XIX веке и занимался механикой. Именно он изучил и использовал в машиностроении фигуру, названную впоследствии его именем. Однако впервые в архитектуре она была применена еще в XIII веке – такова форма некоторых окон церкви Богоматери бельгийского города Брюгге.

Внешний вид и особенности

Построить данную кривую можно как вручную (при помощи линейки и циркуля), так и на компьютере в специальных программах.

1. Необходимо построить правильный треугольник.
2. Из каждой его вершины начертить окружность с радиусом, равным длине стороны треугольника.
3. Область, которая образовалась при пересечении окружностей, а также замкнутая кривая, которая ограничивает данную область, называется треугольником Рёло.

Опытные архитекторы знают множество уникальных особенностей данной фигуры, которые позволяют работать с ней с минимальными погрешностями при построении чертежей, планов и схем.

Архитектор Владимир Головчин:

«Я всегда был неравнодушен к готике. Треугольник Рёло – наиболее часто встречающийся элемент декора в этом стиле. Весьма выигрышно с таким треугольником в основании выглядят высотные здания. Они видны издалека и в отличие от зданий, у которых грани плоские, привлекают игрой света на скругленных сторонах. Если посмотреть на современные тенденции в самолетостроении, складывается впечатление, что и формы летательных аппаратов стремятся к Рёло. Здесь инженерное ремесло пересекается с трудом архитектора».

Преимущества и примеры

Казалось бы, зачем людям использовать выпуклые контуры, когда можно обойтись ровными линиями? Но применение таких фигур имеет не только эстетическое, но и функциональное значение. Например, благодаря постоянной ширине крышки для уличных люков не могут провалиться внутрь. Использование треугольника Рёло также позволяет сократить затраты на производство конструируемых элементов.

В готической архитектуре, как отмечено выше, постоянно встречаются элементы, образованные по принципу треугольника Рёло:

  • стрельчатые арки;
  • раскладка окон или оконные решетки на соборах и церквях;
  • тимпаны – как ниши или как части фронтона.

Искусствовед Дмитрий Антропов:

«…Использование стрельчатой арки позволяло распределять массу не на всю стену, а на отдельные опоры».

Таким образом, конструктивные особенности «круглого треугольника» позволяли сделать здание не только красивым, но и более безопасным.

Встречается этот контур и в сечении зданий – например, в башне делового центра «Кёльнский треугольник» в Кёльне или в музее компании Mercedes-Benz в Штутгарте.

Декоративные приемы стилей модерн и ар-нуво то и дело приближаются к выпуклым формам «круглого треугольника», как еще называют детище Рёло. Отличный пример – двери и забор особняка Бриона в Страсбурге. Внутри элемента орнамента, называемого трикветр, также можно распознать знакомую область.

Архитектор и дизайнер Максим Казанский:

«Благодаря кривой Рёло, здания получают футуристичные очертания. Есть в ней что-то инопланетное, близкое к НЛО. Мне, как дизайнеру, этот треугольник близок, прежде всего, как часть схемы цветовой модели RGB».

Статистика использования

Несмотря на геометрическое совершенство фигуры, создание объектов на ее основе – процедура не простая и не дешевая. Окно подобной формы может быть выполнено только по индивидуальному заказу. Проектирование стены с необычным проемом – это тоже дорогостоящее мероприятие.

Намного проще дело обстоит с предметами внутреннего убранства, их можно изготовить самостоятельно или приобрести в мебельных, строительных магазинах и гипермаркетах.

Чаще всего встречаются:

  • кофейные столики;
  • багеты;
  • люстры;
  • стулья;
  • витражные элементы из оргстекла.

Открытие и исследование данного элемента обнаружило его полезные качества, и исторически так сложилось, что он оправдал себя не в искусстве, а в промышленности:

  • сверло для создания квадратных отверстий;
  • двигатель Ванкеля;
  • грейферный и кулачковый механизмы;
  • катки;
  • медиаторы.

Несмотря на это, его декоративное применение целесообразно в рамках некоторых архитектурных стилей. Плавный контур выпуклого треугольника способен смягчить строгость классических линий, этим можно воспользоваться при строительстве частного дома – сооружения, которое владелец может создать на основе собственной фантазии.

Оставить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *