Типовые неисправности блока питания

Типовые неисправности блока питания

Какова вероятность отказа блока питания ПК при частом включении и выключении ПК?

Блоки питания ПК чаще всего выходят из стоя при включении ПК из-за резонансных явлений, вызывающих перегрузку выходных и входных цепей блока питания.
Поэтому частое включение и выключение ПК неблагоприятно сказывается на его надежности в работе.

На надежность работы компьютера влияют также помехи в цепях электропитания.
Для нормальной работы ПК необходимо, чтобы напряжение сети питания было достаточно стабильным, а уровень помех в сети не должен превышать определенной величины.
При выборе места и способа подключения ПК к электросети необходимо учитывать следующие требования:

• По возможности включайте ПК к отдельным линиям электропитания со своими защитными автоматами.
• Проверьте сопротивление шины заземления (оно должно быть доли Ома).
• Убедитесь в отсутствии помех, бросков и провалов напряжения питания.
• Уровень помех в электросети возрастает при увеличении внутреннего сопротивления линии электропитания.
Не пользуйтесь без крайней необходимости удлинителями.
• Не подключайте к одной розетке ПК и другую бытовую технику (холодильник, телевизор, СВЧ-печь, пылесос, кондиционер и т. д.).

Блок питания (БП) обычно рассчитан на работу в сети переменного тока 115-127 В и 220-240 В и имеет мощность 150-400 Вт.
Он размещается внутри системного блока справа от системной платы в большом металлическом корпусе и подключается к ней с помощью многожильного кабеля.

Для подачи питания +5 и +12 В на НЖМД и НГМД в нем предусмотрен набор четырехжильных кабелей.

Следует помнить, что распайка разъема БП, подключаемого к системной плате, не во всех ПК одинакова.
На задней панели БП имеется переключатель напряжения электропитания.

Типовые неисправности блока питания

Пользователи ПК!
Перед тем как включать компьютер первый раз, не забудьте проверить положение этого переключателя!

Кабель сетевого питания ПК подсоединяется к разъему на задней стенке БП, на которой, как правило, также имеется гнездо для подключения кабеля питания дисплея.

Лучше не ремонтировать?

Если при эксплуатации компьютера в летнее время происходит перегрев БП и его отключение из-за перегрузки, обеспечьте дополнительное охлаждение ПК.
Во избежание нарушений оптимальной циркуляции воздуха внутри системного блока проверьте наличие всех заглушек на задней панели ПК.

Износ БП определяется временем его непрерывной работы.
В зависимости от конструкции, мощности, схемотехнических решений и эффективности вентиляции срок службы БП составляет 3-7 лет.
При выходе БП из строя ПК становится полностью неработоспособным.
Чтобы продлить время безотказной работы БП и самого ПК, необходимо использовать сетевые фильтры, стабилизаторы напряжения или источники бесперебойного питания.

Большинство блоков питания для ПК являются импульсными.
По сравнению с линейными источниками питания они имеют меньшие габариты и вес, большие КПД и коэффициенты стабилизации по току и напряжению.
Стандартный импульсный БП включает в себя сетевой фильтр, выпрямитель, мощные ключевые транзисторы (МКТ), схему управления МКТ, работающую по принципу широтно-импульсного (ШИМ) генератора, схему обратной связи, соединенную с датчиками во вторичных цепях источника, выходные стабилизаторы напряжения +5 и +12 В.

Допустим, блок питания вашего ПК вышел из строя.
Что делать?

Постарайтесь заменить его целиком.
Подберите источник в том же конструктиве, той же мощности (указана на корпусе) и с той же распайкой разъемов.

Приступаем к ремонту блока питания!

При отсутствии резервного БП приступайте к ремонту.
Соблюдайте осторожность — на БП подается напряжение электросети.
Прежде чем включить вынутый из ПК блок питания, к выводам +5 и + 12 В обязательно подключите балластные резисторы (в целях предотвращения выхода его из строя).

Все неисправности БП в зависимости от причины их возникновения можно подразделить на два класса:

• вызванные внешними помехами в сети электропитания и нагрузками, параллельными ПК;
• вызванные внутренними нагрузками, замыканиями или естественным износом БП.

Типовые неисправности блоков питания ПК:

Типовые неисправности блока питания

В блоке питания имеется несколько подстроечных резисторов, имеющих следующие назначение:

• регулятор ШИМ (амплитуда выходных напряжений блока);
• уровень срабатывания защиты;
• регуляторы напряжения линейных стабилизаторов.

Авторы: Платонов Ю. М., Уткин Ю. Г.

Драйвер AMD Radeon Adrenalin 19.7.3 Edition

Типовые неисправности блока питания

AMD представила третий июльский драйвер Radeon Software Adrenalin 2019 Edition 19.7.3.

Драйвер Game Ready GeForce 431.60 WHQL (добавлено)

Типовые неисправности блока питания

Набор графических драйверов GeForce 431.60, сертифицированный лабораторией Microsoft WHQL, добавляет поддержку видеокарт GeForce RTX 2080 Super.

Драйвер AMD Radeon Adrenalin 19.7.2 Edition с поддержкой боевика Gears 5

Типовые неисправности блока питания

Второй июльский драйвер Radeon Software Adrenalin 19.7.2 2019 Edition выпущен для поддержки бета-версии боевика Gears 5.

Драйвер GeForce 431.36 WHQL для видеокарт GeForce RTX Super

Типовые неисправности блока питания

Драйвер AMD Radeon Adrenalin 19.7.1 с программной поддержкой RX 5700

Типовые неисправности блока питания

Компания AMD представила пакет графических драйверов Radeon Software Adrenalin 2019 Edition 19.7.1, обеспечивающий программную поддержку видеокарт Radeon RX 5700 и RX 5700 XT.

Под сомнением полная анонимность браузера Tor

Типовые неисправности блока питания

Специалисты по кибербезопасности российской компании «СёрчИнформ» рассказали журналистам издания «Известия», что браузер для даркнета Tor не может гарантировать анонимность пользователей.

Неисправности блока питания

Без сомнения, блок питания (рис. 1.1) – самый важный компонент компьютера, поскольку именно он отвечает за снабжение стабильным напряжением всех устройств, установленных в компьютере (в том числе подключенных к USB-портам). В самом простом случае неисправность блока питания приводит к нестабильной работе компьютера, постоянным его зависаниям и т. д.

Типовые неисправности блока питания

Рис. 1.1. Блок питания

Блок питания выходит из строя достаточно часто, особенно это касается блоков «со стажем». Самое плохое, что иногда поломка данного устройства влечет за собой выход из строя практически всех установленных компонентов.

Виной всему – нестабильное переменное напряжение и руки неизвестных китайских мастеров, пытающихся сэкономить на «лишних» деталях. Часто причиной неисправности становятся руки «начитанного» пользователя, который вопреки здравому смыслу пытается уменьшить шум вентилятора блока питания с помощью имеющегося регулятора оборотов или самостоятельной подачи на него пониженного напряжения, в то время как температура внутри блока питания находится на критическом уровне. Кроме того, мало кто думает о том, чтобы приобрести источник бесперебойного питания и обезопасить себя от проблем, связанных с резкими скачками напряжения, которые блок питания переносит очень болезненно.

В домашних условиях блок питания можно починить, если вы имеете достаточный опыт в ремонтных делах и знакомы с основами радиоэлектроники. Если вы совсем новичок в этом деле, то максимум, что вы сможете сделать, – проверить предохранитель и внешне осмотреть компоненты блока питания. Чтобы точно определить неисправное звено, следует вооружиться измерительным прибором.

Намного более предпочтительно купить новый блок питания, поскольку ресурс работы блока достаточно малый, а количество подключаемых устройств и потребление мощности возрастает, что приводит к большой нагрузке на него и быстрому сокращению «жизни».

Если вы все-таки решили самостоятельно произвести ремонт этого устройства, помните, что блок питания построен по модульному принципу. При этом каждый модуль выполняет только свою работу. Такой способ построения позволяет выработать подход к поиску и устранению возникающих неисправностей. Однако для этого необходимо знать принцип работы каждого модуля блока питания.

В упрощенном варианте алгоритм работы блока питания выглядит следующим образом. Поступая на вход блока питания, переменное напряжение обрабатывается сетевым фильтром и высоковольтным выпрямителем. Выпрямленное высоковольтным фильтром напряжение поступает на импульсный трансформатор, который понижает его до нужного уровня. Далее пониженное постоянное напряжение поступает на стабилизатор, который контролирует характеристики напряжения и при необходимости преобразует его. В итоге получается набор напряжений, обладающих необходимыми характеристиками: ±5 и ±12 В с нужной силой тока.

Читать также:  Сварочный аппарат инвертор плюсы и минусы

Примечание

На практике количество стабилизаторов, фильтров и других компонентов может быть больше одного, что обеспечивает более качественную стабилизацию напряжения.

Таким образом, определив сбойный модуль, достаточно заменить детали исправными. Работа блока питания должна восстановиться, если, конечно, устройство не повреждено настолько серьезно, что это привело к выходу из строя еще нескольких модулей блока питания.

Проявление ошибок в работе блока питания

Приближающуюся «кончину» блока питания можно предвидеть. О неисправностях устройства свидетельствуют следующие признаки:

• периодический или полный отказ компьютера включаться;

• появление неприятного запаха из вентиляционных отверстий блока питания;

• внезапные перезагрузки или зависания компьютера во время обычной работы;

• ошибки в функционировании оперативной памяти как при начальном тестировании, так и при работе в операционной системе;

• прекращение работы сразу всех устройств хранения данных (при пропадании напряжения на выводах блока питания) или каждого по очереди;

• заметное повышение температуры в блоке питания и корпусе компьютера (из-за выхода из строя вентилятора или вентиляторов, установленных в блоке питания, или любых других электронных составляющих);

• появление напряжения на корпусе компьютера, что можно ощутить, если приложить руку к корпусу или разъемам на задней стенке;

• появление странных ошибок в работе операционной системы и программ.

Если компьютер перестал включаться и появился неприятный запах, значит, вы не сумели вовремя предупредить выход блока питания из строя. Следует учесть, что это могло привести и к повреждению других устройств.

Плавкий предохранитель

Большая часть блоков питания, как и большая часть бытовых устройств, снабжена плавким или керамическим предохранителем. Такой предохранитель срабатывает и перегорает при повышенном потреблении тока или резком скачке напряжения (что может произойти по разным причинам). При этом тонкая проволока (или керамический корпус) внутри предохранителя перегорает, и напряжение перестает поступать на другие компоненты блока питания. Это самый простой, но не самый действенный способ предохранить их от поломки.

В этом случае сначала нужно отключить блок питания от напряжения и вытянуть его из корпуса. Далее следует снять с блока питания защитный кожух.

Обычно на крышке блока питания присутствует гарантийная наклейка производителя, которая легко рвется при разборке устройства. Поэтому имейте в виду, что, открыв блок питания, вы тем самым лишитесь гарантийного обслуживания (если таковое, конечно, имеется). Кроме того, очень часто производители блоков питания используют для защиты кожуха специальные винты, а иногда и заклепки, которые непросто выкрутить без специального инструмента.

Сняв кожух, внимательно рассмотрите плату блока питания. Поскольку предохранитель устанавливается непосредственно за кабелем питания, то и искать его нужно там, где этот кабель припаян к печатной плате.

Как правило, предохранитель выглядит как деталь со стеклянным или керамическим корпусом (рис. 1.2). Если корпус стеклянный, вы без труда увидите внутри тонкую проволоку. Ее отсутствие или обрыв – явный свидетель неисправности предохранителя.

Типовые неисправности блока питания

Рис. 1.2. Внешний вид керамического предохранителя

Однако он может иметь другую форму и быть припаянным непосредственно к плате. В этом случае вам придется выпаять предохранитель.

Для замены используйте аналогичный по параметрам предохранитель. Предохранители отличаются током срабатывания, что зависит от мощности блока питания. Например, в блоках питания средней мощности (200–300 Вт) установлены предохранители с током сгорания 4 А. Поэтому обязательно обратите внимание на маркировку предохранителя, нанесенную на один из металлических контактов предохранителя или на его стеклянный корпус. Многие пользователи вместо предохранителя используют тонкую проволоку (так называемый «жучок»), припаяв ее к контактам крепления предохранителя. Этот способ имеет свои недостатки: слишком толстая проволока может не перегореть, когда это нужно, что приведет к выходу из строя других модулей блока питания и появлению невосстановимых неисправностей.

Если после замены предохранителя блок питания включится и компьютер заработает в обычном режиме, значит, проблема решена. Если же, независимо от того, перегорает или не перегорает предохранитель, после подачи напряжения блок питания «молчит», то это говорит о неисправности в каком-то другом модуле блока питания.

Высоковольтный выпрямитель

Практически в любой электронной аппаратуре в качестве высоковольтного выпрямителя выступает сборка (или несколько сборок) из четырех высоковольтных диодов, включенных по параллельной схеме, задача которой – превращение переменного напряжения в постоянное. Диоды могут находиться в закрытом пластмассовом корпусе, а могут располагаться рядом друг с другом на печатной плате блока питания (рис. 1.3).

В любом случае нужно проверять каждый диод, поскольку неисправность одного из них автоматически приводит к перегоранию предохранителя. Для проверки выпрямителя следует воспользоваться мультиметром, подключая его контакты к каждому из диодов. При этом сопротивление диода в прямом направлении должно составлять примерно 500–600 Ом, а в обратном – 1,1–1,3 МОм. Если сопротивление диода не соответствует приведенным показателям, то его необходимо заменить, выпаяв его из платы.

Паяльником необходимо пользоваться с осторожностью, поскольку слишком долгий нагрев детали может привести к выходу ее из строя или отслоению печатных проводников на плате.

Типовые неисправности блока питания

Рис. 1.3. Высоковольтный выпрямитель (диоды)

Иногда вместе с высоковольтными диодами дополнительно работают высоковольтные транзисторы. Такие транзисторы установлены на радиаторах, поскольку в процессе работы сильно нагреваются. Именно этот факт приводит к тому, что транзисторы выходят из строя. Это случается при использовании неэффективных радиаторов или нарушении температурного режима в блоке питания.

В большинстве случаев для проверки транзистора его не обязательно отпаивать. Обычный транзистор имеет три ножки – базу, коллектор и эмиттер. Транзисторы нужно тестировать и на замыкание, и на внутренний обрыв, поэтому необходимо точно знать, где находится какая ножка. Информацию о конкретном транзисторе можно найти в справочной литературе или в Интернете. Как бы там ни было, рабочий транзистор следует прозванивать от базы к эмиттеру и коллектору, а между эмиттером и коллектором – нет. Поскольку транзистор – родной брат диода, то и сопротивление переходов у них примерно одинаковое. Таким образом, в одну сторону сопротивление должно составлять 100–300 Ом, а в обратную – больше 1 МОм.

Высоковольтный фильтр

Если проверка высоковольтного выпрямителя не дала результатов, следует проверить высоковольтный фильтр. В качестве высоковольтного фильтра выступает набор из нескольких электролитических конденсаторов большой емкости. Именно эти конденсаторы являются причиной выхода из строя блока питания, особенно если их количество слишком мало или электролитические характеристики далеки от нормы (рис. 1.4).

Типовые неисправности блока питания

Рис. 1.4. Конденсатор высоковольтного фильтра (обратите внимание: второй конденсатор отсутствует)

Электролитические конденсаторы, как известно, рассчитаны на определенное напряжение и имеют определенную емкость. Емкость конденсатора обеспечивается за счет его специальной конструкции и применения электролита. Таким образом, конденсатор может выйти из строя, если на него подать слишком высокое напряжение или если он теряет емкость при высыхании или вытекании электролита. Такое редко случается с конденсаторами известных производителей, которые устанавливаются в дорогие блоки питания. Если же вы являетесь обладателем дешевого блока питания неизвестного производителя – приготовьтесь к сюрпризам.

Читать также:  Дрель шуруповерт сетевая бош

Что касается номинального напряжения конденсатора, то многие производители изначально устанавливают конденсаторы с меньшим рабочим напряжением, что приводит к их короткой службе.

Чаще всего конденсатор теряет емкость в условиях повышенной температуры, когда компоненты блока питания не охлаждаются должным образом.

Все конденсаторы нужно проверить, для чего их следует выпаять из платы. Проверить конденсатор очень просто. Для этого необходимо подключить выводы конденсатора к щупам мультиметра и понаблюдать за отображаемой на его экране информацией. Сопротивление исправного конденсатора будет находиться примерно на одном уровне и не будет уменьшаться. Если же сопротивление конденсатора медленно уменьшается, значит, конденсатор неисправен и подлежит замене.

Для замены обязательно используйте конденсаторы с достаточным запасом напряжения, например 250–270 В, и емкости, значение которой нанесено на корпус. Как правило, емкость таких конденсаторов составляет 400–1500 мкФ.

Стабилизатор

Стабилизатор можно считать самым главным модулем блока питания. В этом устройстве применяются интегральные схемы, что говорит о его некоторой интеллектуальности. Стабилизатор состоит из каналов, каждый из которых обрабатывает конкретное напряжение и контролирует его.

Поскольку стабилизатор основан на схеме, работающей по принципу широтно-импульсного (ШИМ) генератора, то в идеале для диагностики микросхемы требуется наличие осциллографа. Кроме того, необходимо иметь дополнительное устройство, способное выдавать необходимое напряжение.

Если осциллографа у вас нет, то можно воспользоваться способом, который безошибочно определяет неисправность микросхемы. Как правило, в роли стабилизатора выступает микросхема TL494 (или ее аналоги), имеющая 14 выводов, каждый из которых представляет нужное напряжение определенной характеристики (рис. 1.5).

Типовые неисправности блока питания

Рис. 1.5. Стабилизатор (микросхема)

Суть способа заключается в проверке стабилизатора, который находится внутри микросхемы. Для этого на двенадцатую ножку подайте постоянное напряжение от +9 до +12 В, а на седьмую – от –9 до –12 В (при этом отключите блок питания от сети). Напряжение на четырнадцатой ножке микросхемы должно быть +5 В. Если отклонение от этого значения достаточно сильное (более 0,5 В), то внутренний стабилизатор микросхемы неисправен. В этом случае придется заменить микросхему.

Типовые неисправности блока питания

В современном мире развитие и устаревание комплектующих персональных компьютеров происходит очень быстро. Вместе с тем один из основных компонентов ПК – блок питания форм-фактора ATX – практически не изменял свою конструкцию последние 15 лет.

Следовательно, блок питания и суперсовременного игрового компьютера, и старого офисного ПК работают по одному и тому же принципу, имеют общие методики диагностики неисправностей.

Материал, изложенный в этой статье, может применяться к любому блоку питания персональных компьютеров с минимумом нюансов.

Устройство блока питания

Типовые неисправности блока питания

Типовая схема блока питания ATX приведена на рисунке. Конструктивно он представляет собой классический импульсный блок на ШИМ-контроллере TL494, запускающемся по сигналу PS-ON (Power Switch On) с материнской платы. Все остальное время, пока вывод PS-ON не подтянут к массе, активен только источник дежурного питания (Standby Supply) с напряжением +5 В на выходе.

Рассмотрим структуру блока питания ATX подробнее. Первым ее элементом является
сетевой выпрямитель:

Типовые неисправности блока питания

Его задача – это преобразование переменного тока из электросети в постоянный для питания ШИМ-контроллера и дежурного источника питания. Структурно он состоит из следующих элементов:

  • Предохранитель F1 защищает проводку и сам блок питания от перегрузки при отказе БП, приводящем к резкому увеличению потребляемого тока и как следствие – к критическому возрастанию температуры, способному привести к пожару.
  • В цепи «нейтрали» установлен защитный терморезистор, уменьшающий скачок тока при включении БП в сеть.
  • Далее установлен фильтр помех, состоящий из нескольких дросселей (L1, L2), конденсаторов (С1, С2, С3, С4) и дросселя со встречной намоткой Tr1. Необходимость в наличии такого фильтра обусловлена значительным уровнем помех, которые передает в сеть питания импульсный блок – эти помехи не только улавливаются теле- и радиоприемниками, но и в ряде случаев способны приводить к неправильной работе чувствительной аппаратуры.
  • За фильтром установлен диодный мост, осуществляющий преобразование переменного тока в пульсирующий постоянный. Пульсации сглаживаются емкостно-индуктивным фильтром.

Далее постоянное напряжение, присутствующее все время, пока блок питания ATX подключен к розетке, поступает на схемы управлением ШИМ-контроллера и источник дежурного питания.

Типовые неисправности блока питания

Источник дежурного питания – это маломощный самостоятельный импульсный преобразователь на основе транзистора T11, который генерирует импульсы, через разделительный трансформатор и однополупериодный выпрямитель на диоде D24 запитывающие маломощный интегральный стабилизатор напряжения на микросхеме 7805. Эта схема хотя и является, что называется, проверенной временем, но ее существенным недостатком является высокое падение напряжения на стабилизаторе 7805, при большой нагрузке приводящее к ее перегреву. По этой причине повреждение в цепях, запитанных от дежурного источника, способно привести к выходу его из строя и последующей невозможности включения компьютера.

Основой импульсного преобразователя является ШИМ-контроллер. Эта аббревиатура уже несколько раз упоминалась, но не расшифровывалась. ШИМ – это широтно-импульсная модуляция, то есть изменение длительности импульсов напряжения при их постоянной амплитуде и частоте. Задача блока ШИМ, основанного на специализированной микросхеме TL494 или ее функциональных аналогах – преобразование постоянного напряжения в импульсы соответствующей частоты, которые после разделительного трансформатора сглаживаются выходными фильтрами. Стабилизация напряжений на выходе импульсного преобразователя осуществляется подстройкой длительности импульсов, генерируемых ШИМ-контроллером.

Важным достоинством такой схемы преобразования напряжения также является возможность работы с частотами, значительно большими, чем 50 Гц электросети. Чем выше частота тока, тем меньшие габариты сердечника трансформатора и число витков обмоток требуются. Именно поэтому импульсные блоки питания значительно компактнее и легче классических схем с входным понижающим трансформатором.

Типовые неисправности блока питания

За включение блока питания ATX отвечает цепь на основе транзистора T9 и следующих за ним каскадов. В момент включения блока питания в сеть на базу транзистора через токоограничительный резистор R58 подается напряжение 5В с выхода источника дежурного питания, в момент замыкания провода PS-ON на массу схема запускает ШИМ-контроллер TL494. При этом отказ источника дежурного питания приведет к неопределенности работы схемы запуска БП и вероятному отказу включения, о чем уже упоминалось.

Типовые неисправности блока питания

Основную нагрузку несут на себе выходные каскады преобразователя. В первую очередь это касается коммутирующих транзисторов T2 и T4, которые устанавливаются на алюминиевых радиаторах. Но при высокой нагрузке их нагрев даже с пассивным охлаждением может оказаться критическим, поэтому блоки питания дополнительно оснащаются вытяжным вентилятором. При его отказе или сильной запыленности вероятность перегрева выходного каскада значительно возрастает.

Современные блоки питания все чаще используют вместо биполярных транзисторов мощные MOSFET-ключи, за счет значительно меньшего сопротивления в открытом состоянии обеспечивающие больший КПД преобразователя и поэтому менее требовательные к охлаждению.

Видео про устройство БП компьютера, его диагностику и ремонт

Распиновка основного коннектора БП

Изначально компьютерные блоки питания стандарта ATX использовали для соединения с материнской платой 20-контактный разъем (ATX 20-pin). Сейчас его можно встретить только на устаревшей технике. В дальнейшем рост мощностей персональных компьютеров, а следовательно – и их энергопотребления, привел к использованию дополнительных 4-контактных разъемов (4-pin). Впоследствии разъемы 20-pin и 4-pin были конструктивно объединены в один 24-контактный разъем, причем у многих блоков питания часть коннектора с дополнительными контактами могла отделяться для совместимости со старыми материнскими платами.

Читать также:  Фрезы для обработки камня

Типовые неисправности блока питания

Назначение контактов разъемов стандартизировано в форм-факторе ATX следующим образом согласно рисунку (термином «управляемое» отмечены те выводы, на которых напряжение появляется только при включении ПК и стабилизируется ШИМ-контроллером):

Наименование контактаНазначение
+3.3VПоложительное напряжение 3,3 В, управляемое. Питание материнской платы и процессора.
+5VПоложительное управляемое напряжение 5В. Питание части узлов материнской платы, жестких дисков, внешних устройств USB.
+12VУправляемое напряжение 12В для жестких дисков, вентиляторов систем охлаждения.
-5VУправляемое напряжение -5В. Стандартом ATX, начиная с версии 1.3, более не используется.
-12VУправляемое напряжение -12В. Практически не используется.
GroundМасса.
PGИмеет высокий уровень при условии превышения напряжениями 5В и 3,3В нижнего порога (сигнализирует о выходе БП в рабочий режим).
+5VSBПостоянное напряжение 5В (дежурный источник).
PS-ONВключение блока питания при замыкании вывода на массу.

Распределение нагрузки на блок питания

Поэтому для каждого блока, кроме суммарной максимальной мощности, указывается и максимальное потребление тока для каждого выходного напряжения.

Типовые неисправности блока питания

Используя в качестве примера приведенную выше фотографию, продемонстрируем принцип расчета применимости БП:

  • Цепь 3,3В имеет максимально допустимый ток нагрузки 27А (89 Вт);
  • Цепь 5В может отдавать ток до 26А (130 Вт);
  • Цепь 12В рассчитана на ток до 18А (216 Вт).

Но, так как все эти цепи запитаны от обмоток общего трансформатора, их суммарное потребление ограничивается: если в теории максимальная нагрузка по напряжениям 3,3В и 5В может доходить до 219 Вт, она ограничена значением в 195 Вт. При максимальной теоретической токоотдаче всех трех цепей в 411 Вт реальная нагрузка ограничена цифрой в 280 Вт.

Таким образом, при добавлении нового «железа» в свой ПК нужно учитывать не только общее энергопотребление, но и баланс электрических цепей. Особенно часто замена блоков питания на более мощные требуется при установке высокопроизводительных видеокарт, значительно нагружающих цепь 12В, в то время как большую часть мощности ПК отбирают по низковольтным цепям – запас по высокому напряжению остается недостаточным.

Возможные неисправности БП

Поэтому большинство неисправностей БП персональных компьютеров связаны либо со старением его компонентов, либо со значительными отклонениями питания или нагрузки от номинальных параметров. Отдельно стоит упомянуть перегрев выходных каскадов из-за накопления пыли внутри БП при недостаточной частоте обслуживания компьютера.

Сильнее всего старение сказывается на состоянии электролитических конденсаторов выпрямителя и выходных каскадов. Со временем они деградируют, теряя емкость, что приводит к заметному росту пульсаций напряжения на выходе блока, что может приводить к сбоям в работе ПК. Также, особенно в дешевых блоках, старение электролитических конденсаторов сопровождается их заметным вздутием, иногда приводящему к их разрушению с характерным хлопком.

Значительный рост напряжения питания или избыточная нагрузка способны привести к перегреву и короткому замыканию внутри диодного моста входного выпрямителя. В этом случае переменный ток из сети поступает в цепи, не рассчитанные на работу с ним: разрушаются электролитические конденсаторы, рассчитанные на однополярное питание, повреждаются ШИМ-контроллер и его транзисторная обвязка. Зачастую повреждение БП при этом делает его ремонт менее рентабельным по сравнению с полной заменой.

Отказ выходных транзисторов импульсного преобразователя чаще всего является следствием их длительного перегрева, вызванного перегрузкой или недостаточным охлаждением.

Проверка блока питания

Хотя импульсный БП и не относится к числу радиоэлектронных схем начального уровня, его диагностика и ремонт своими руками доступны многим людям, имеющим базовые знания и навыки в области радиоэлектроники. Рассмотрим типовую процедуру проверки снятого с компьютера БП:

  1. Подключите к выводам +3,3В, +5В и +12В мощные нагрузочные резисторы, рассчитанные на ток около 1А и соответствующую мощность. Это нужно для избежания неправильной работы некоторых блоков без нагрузки.
  2. Подайте на блок сетевое питание.
  3. Проверьте наличие напряжения на линии +5VSB. Оно должно возникать непосредственно после включения блока в сеть.
  4. Замкните вывод PS-ON на корпус БП. При этом на силовых выходах БП и выводе PG должны установиться соответствующие напряжения.

Возможные варианты неисправностей:

  • При включении питания отсутствует дежурное напряжение. Если при этом БП запускается и генерирует управляемые напряжения, проверьте работоспособность импульсного преобразователя дежурного напряжения (наличие импульсов на первичной обмотке его трансформатора), исправность выпрямителя (наличие постоянного напряжения не менее 9В на входе микросхемы 7805) и работоспособность стабилизатора (на выходе микросхемы 7805 должно быть +5В).
  • Если присутствует дежурное напряжение, но БП не запускается, попробуйте принудительно запустить ШИМ-контроллер следующим образом:Типовые неисправности блока питания
  • При отсутствии генерации импульсов на обозначенных ножках микросхемы потребуется ее замена. В противном случае следует обратить внимание на выходной каскад преобразователя, особенно – коммутирующие транзисторы.
  • Если нет дежурного напряжения и БП не запускается, последовательно проверьте входной выпрямитель: целостность предохранителя и терморезистора, отсутствие обрывов в обмотках дросселей. Однако наиболее часто встречающаяся неисправность – это выгорание диодного моста в результате короткого замыкания в конденсаторе фильтра. Это будет сразу заметно и по характерному запаху, и по сгоревшим диодам.
  • Если же отсутствует напряжение только на одном из управляемых силовых выходов, стоит в первую очередь обратить внимание на выпрямительный диод и фильтрующий конденсатор этой цепи.

Ремонт блока питания

Так как вопрос «как отремонтировать компьютерный БП» вряд ли возникнет у профессионально владеющего соответствующим инструментом (паяльной станцией, оловоотсосом и т.д.) человека, в дальнейшем мы будем исходить из минимального набора самых распространенных приспособлений.

Следовательно, нам понадобится

  • паяльник мощностью в пределах 65 Вт с плоской заточкой жала,
  • припой,
  • бескислотный флюс (канифоль),
  • пинцет и плоская отвертка.

Удалить лишний припой можно с помощью зачищенного многожильного медного провода, внесенного под флюсом в каплю расплавленного олова.

При замене крупногабаритных элементов наподобие конденсаторов нужно последовательно разогреть точки пайки их ножек, по возможности убрать лишний припой и далее, либо поочередно прогревая ножки и наклоняя корпус конденсатора из стороны в сторону извлечь его, либо, если размеры жала паяльника это позволяют, одновременно нагреть обе точки пайки и быстро выдернуть конденсатор из отверстий в плате. При этом, как и при работе с другими элементами, важно минимизировать время воздействия паяльника на плату и деталь.

Транзисторы и мощные диоды при их замене устанавливаются в отверстия на плате таким образом, чтобы из крепежное отверстие совпало с резьбой в теле радиатора. Перед прикреплением к радиатору поверхность детали смазывается термопроводной пастой (КПТ -8 или ее аналоги).

Заменяя электролитический конденсатор или диод, необходимо помнить, что это элемены полярные, и их установка должна строго соответствовать рисунку на плате (у конденсаторов, кроме танталовых, полоска обозначает отрицательный полюс).

Еще один материал про ремонт БП компьютера

После ремонта блока питания не стоит спешить устанавливать его в компьютер – лучше всего повторить проверку, описанную ранее.

Заключение

Хотя современные блоки питания ATX и очень надежны, знание общего принципа их работы и проверки может зачастую пригодиться не только для правильного выбора БП к своему компьютеру, но и для экономии денег при его отказе – ремонт своими руками обычно значительно дешевле покупки нового блока.

Оставить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *