Таблица защита металлов от коррозии

Для защиты металлов от коррозии применяются различные способы, которые условно можно разделить на следующие основные направления: легирование металлов; защитные покрытия (металлические, неметаллические); электрохимическая защита; изменение свойств коррозионной среды; рациональное конструирование изделий.

Легирование металлов. Это эффективный метод повышения коррозионной стойкости металлов. При легировании в состав сплава или металла вводят легирующие элементы (хром, никель, молибден и др.), вызывающие пассивность металла. Пассивацией называют процесс перехода металла или сплава в состояние его повышенной коррозионной устойчивости, вызванное торможением анодного процесса. Пассивное состояние металла объясняется образованием на его поверхности совершенной по структуре оксидной пленки (оксидная пленка обладает защитными свойствами при условии максимального сходства кристаллических решеток металла и образующегося оксида).

Широкое применение нашло легирование для защиты от газовой коррозии. Легированию подвергаются железо, алюминий, медь, магний, цинк, а также сплавы на их основе. В результате чего получаются сплавы с более высокой коррозионной стойкостью, чем сами металлы. Эти сплавы обладают одновременно жаростойкостью и жаропрочностью.

Жаростойкость – стойкость по отношению к газовой коррозии при высоких температурах. Жаропрочность – свойства конструкционного материала сохранять высокую механическую прочность при значительном повышении температуры. Жаростойкость обычно обеспечивается легированием металлов и сплавов, например, стали хромом, алюминием и кремнием. Эти элементы при высоких температурах окисляются энергичнее, чем железо, и образуют при этом плотные защитные пленки оксидов, например Al2O3 и Cr2O3 .

Легирование также используется с целью снижения скорости электрохимической коррозии, особенно коррозии с выделением водорода. К коррозионностойким сплавам, например, относятся нержавеющие стали, в которых легирующими компонентами служат хром, никель и другие металлы.

Защитные покрытия. Слои, искусственно создаваемые на поверхности металлических изделий для защиты их коррозии, называются защитными покрытиями. Нанесение защитных покрытий – самый распространенный метод борьбы с коррозией. Защитные покрытия не только предохраняют изделия от коррозии, но и придают поверхностям ряд ценных физико-химических свойств (износостойкость, электрическую проводимость и др.). Они подразделяются на металлические и неметаллические. Общими требованиями для всех видов защитных покрытий являются высокая адгезионная способность, сплошность и стойкость в агрессивной среде.

Металлические покрытия. Металлические покрытия занимают особое положение, так как их действие имеет двойственный характер. До тех пор, пока целостность слоя покрытия не нарушена, его защитное действие сводится к изоляции поверхности защищаемого металла от окружающей среды. Это не отличается от действия любого механического защитного слоя (окраска, оксидная пленка и т.д.). Металлические покрытия должны быть непроницаемы для коррозионных агентов.

При повреждении покрытия (или наличии пор) образуется гальванический элемент. Характер коррозионного разрушения основного металла определяется электрохимическими характеристиками обоих металлов. Защитные антикоррозионные покрытия могут быть катодными и анодными. К катодным покрытиям относятся покрытия, потенциалы которых в данной среде имеют более положительное значение, чем потенциал основного металла. Анодные покрытия имеют наиболее отрицательный потенциал, чем потенциал основного металла.

Так, например, по отношению к железу никелевое покрытие является катодным, а цинковое – анодным (рис. 2.).

При повреждении никелевого покрытия (рис. 2,а) на анодных участках происходит процесс окисления железа вследствие возникновения микрокоррозионных гальванических элементов. На катодных участках — восстановление водорода. Следовательно, катодные покрытия могут защищать металл от коррозии лишь при отсутствии пор и повреждения покрытия.

Местное повреждение защитного цинкового слоя ведет к дальнейшему его разрушению, при этом поверхность железа защищена от коррозии. На анодных участках происходит процесс окисления цинка. На катодных участках — восстановление водорода (рис. 2,б).

Электродные потенциалы металлов зависят от состава растворов, поэтому при изменении состава раствора может меняться и характер покрытия.

Для получения металлических защитных покрытий применяются различные способы: электрохимический(гальванические покрытия);погружение в расплавленный металл(горячее цинкование, лужение);металлизация(нанесение расплавленного металла на защищаемую поверхность с помощью струи сжатого воздуха);химический(получение металлических покрытий с помощью восстановителей, например гидразина).

Таблица защита металлов от коррозии

Рис. 2. Коррозия железа в кислотном растворе с катодным (а) и анодным (б) покрытиями: 1 – основной металл; 2 – покрытие; 3 – раствор электролита.

Материалами для металлических защитных покрытий могут быть как чистые металлы (цинк, кадмий, алюминий, никель, медь, хром, серебро и др.), так и их сплавы (бронза, латунь и др.).

Неметаллические защитные покрытия. Они могут быть как неорганическими, так и органическими. Защитное действие этих покрытий сводится в основном к изоляции металла от окружающей среды.

В качестве неорганических покрытий применяют неорганические эмали, оксиды металлов, соединение хрома, фосфора и др. К органическим относятся лакокрасочные покрытия, покрытия смолами, пластмассами, полимерными пленками, резиной.

Неорганические эмали по своему составу являются силикатами, т.е. соединениями кремния. К основным недостаткам таких покрытий относятся хрупкость и растрескивание при тепловых и механических ударах.

Читать также:  Простая комнатная антенна для телевизора своими руками

Лакокрасочные покрытия наиболее распространены. Лакокрасочное покрытие должно быть сплошным, газо -и водонепроницаемым, химически стойким, эластичным, обладать высоким сцеплением с материалом, механической прочностью и твердостью.

Химические способы очень разнообразны. К ним относится, например, обработка поверхности металла веществами, вступающими с ним в химическую реакцию и образующими на его поверхности пленку устойчивого химического соединения, в формировании которой принимает участие сам защищаемый металл. К числу таких способов относится оксидирование, фосфатирование, сульфи-дирование и др.

Оксидирование — процесс образования оксидных пленок на поверхности металлических изделий.

Современный метод оксидирования – химическая и электрохимическая обработка деталей в щелочных растворах.

Для железа и его сплавов наиболее часто используется щелочное оксидирование в растворе, содержащем NaOH, NaNO3, NaNO2 при температуре 135-140 О С. Оксидирование черных металлов называется воронением.

На анодных участках происходит процесс окисления:

Fe Таблица защита металлов от коррозииFe 2+ + 2 Таблица защита металлов от коррозии

На катодных участках происходит процесс восстановления:

2 Н2О + О2 + 4 Таблица защита металлов от коррозии Таблица защита металлов от коррозии4ОН —

На поверхности металла в результате работы микрогальванических элементов образуется Fe(OH)2, который затем окисляется в Fe3O4. Оксидная пленка на малоуглеродистой стали имеет глубокий черный цвет, а на высокоуглеродистой стали – черный с сероватым оттенком.

Fe 2+ + 2OH — Таблица защита металлов от коррозииFe(OH)2;

12 Fe(OH)2 + NaNO3 Таблица защита металлов от коррозии4Fe3O4 + NaOH + 10 H2O + NH3

Противокоррозионные свойства поверхностной пленки оксидов невысоки, поэтому область применения этого метода ограничена. Основное назначение – декоративная отделка. Воронение используется в том случае, когда необходимо сохранить исходные размеры, так как оксидная пленка составляет всего 1,0 – 1,5 микрона.

Фосфатирование — метод получения фосфатных пленок на изделиях из цветных и черных металлов. Для фосфатирования металлическое изделие погружают в растворы фосфорной кислоты и ее кислых солей (H3PO4 + Mn(H2PO4)2) при температуре 96-98 о С.

На поверхности металла в результате работы микрогальванических элементов образуется фосфатная пленка, которая имеют сложный химический состав и содержит малорастворимые гидраты двух- и трех замещенных фосфатов марганца и железа: MnHPO4 , Mn3(PO4)2 , FeHPO4 , Fe3(PO4)2 n H2O.

На анодных участках происходит процесс окисления:

Fe Таблица защита металлов от коррозииFe 2+ + 2 Таблица защита металлов от коррозии

На катодных участках происходит процесс восстановления водорода:

2Н + + 2 Таблица защита металлов от коррозии Таблица защита металлов от коррозииН2 Таблица защита металлов от коррозии(рН 2+ с анионами ортофосфорной кислоты и ее кислых солей образуются фосфатные пленки:

Fe 2+ + H2PO — 4 Таблица защита металлов от коррозииFeHPO4 + H +

3Fe 2+ + 2 PO4 3- Таблица защита металлов от коррозииFe3(PO4)2

Образующаяся фосфатная пленка химически связана с металлом и состоит из сросшихся между собой кристаллов, разделенных порами ультрамикроскопических размеров. Фосфатные пленки обладают хорошей адгезией, имеют развитую шероховатую поверхность. Они являются хорошим грунтом для нанесения лакокрасочных покрытий и пропитывающих смазок. Фосфатные покрытия применяются в основном для защиты металлов от коррозии в закрытых помещениях, а также как метод подготовки поверхности к последующей окраске или покрытию лаком. Недостатком фосфатных пленок является низкая прочность и эластичность, высокая хрупкость.

Анодирование – это процесс образования оксидных пленок на поверхности металла и прежде всего алюминия. В обычных условиях на поверхности алюминия присутствует тонкая оксидная пленка оксидов Al2O3 или Al2O3 ∙ nH2O, которая не может защитить его от коррозии. Под воздействием окружающей среды алюминий покрывается слоем продуктов коррозии. Процесс искусственного образования оксидных пленок может быть осуществлен химическим и электрохимическим способами. При электрохимическом оксидировании алюминия алюминиевое изделие играет роль анода электролизера. Электролитом служит раствор серной, ортофосфорной, хромовой, борной или щавелевой кислот, катодом может быть металл, не взаимодействующий с раствором электролита, например нержавеющая сталь. На катоде выделяется водород, на аноде происходит образование оксида алюминия. Суммарный процесс на аноде можно представить следующим уравнением:

2 Al + 3 H2O Таблица защита металлов от коррозииAl2O3 + 6 H + + 6 Таблица защита металлов от коррозии

Интенсивное развитие производства стали, как правило, предполагает поиск новых средств и способов, которые позволяли бы предотвращать разрушение изделий из металла. Создание инновационных методик, связанных с защитой от коррозии, — это постоянный процесс. Изделия, сделанные практически из любого металла, могут терять свою работоспособность из-за воздействия химических и физических факторов извне. Последствия этого можно увидеть в виде ржавчины.

Таблица защита металлов от коррозии

Разновидности коррозии

Перед тем как защитить металл от ржавчины, следует узнать о существующих видах. Способ обеспечения антикоррозийной защиты находится в прямой зависимости от условий применения деталей. Потому принято выделять следующие типы:

  • коррозия, которая связана с явлениями атмосферного характера;
  • разрушение структуры металла в воде из-за наличия в ней солей и бактерий;
  • деструктивные процессы, происходящие в грунте (почвенная коррозия).

Способы антикоррозионной защиты при этом должны подбираться в индивидуальном порядке, руководствуясь тем, в каких условиях будет эксплуатироваться изделие из металла.

Что касается типов поражения конструкций, то они могут быть следующими:

  • ржавчина находится на всей поверхности изделия отдельными участками или сплошным покрытием;
  • имеет вид пятен и проникает вглубь элемента;
  • разрушает молекулы металла, приводя к трещинам;
  • масштабное ржавление, при котором разрушается не только поверхность, но и более глубокие слои.
Читать также:  Станок для лазерной резки дерева фанеры

Таблица защита металлов от коррозииТипы разрушения бывают и комбинированными. В некоторых ситуациях их очень сложно определить на глаз, особенно при точечном ржавлении.

Принято выделять химическую коррозию. При контакте с нефтяными продуктами, спиртами и иными агрессивными веществам происходит особая реакция, которая сопровождается высокой температурой и выделениями газа.

При электрохимической коррозии поверхность металлического сплава соприкасается с водой (электролитом). При этом осуществляется диффузия материала. Электролит обуславливает появление электротока, а электроны металла замещаются и приходят в движение, в результате чего возникает ржавчина.

Обеспечение защиты от коррозии и выплавка стальных изделий — две взаимосвязанные вещи. Коррозия причиняет существенный ущерб постройкам хозяйственного или промышленного назначения. Кроме того, этот процесс может привести к катастрофе, если говорить, например, об опорах электропередач, мостах, заграждениях и т. д.

Защита от коррозии в промышленности и быту

Необходимо обеспечить металлу надежную защиту от коррозии. Все условия, когда требуется защита металлов от коррозии, кратко можно поделить на промышленные и бытовые.

В промышленности существует несколько вариантов антикоррозийной защиты:

  1. Таблица защита металлов от коррозииПассивация. В процессе производства в сталь добавляются другие металлические сплавы (молибден, никель, ниобий). Эти материалы характеризуются отличными эксплуатационными свойствами и высокой стойкостью к агрессивным воздействиям. Эти разновидности стали принято называть легированными.
  2. Нанесение на поверхность стали каких-то других металлов. При этом на изделии образуется защитное покрытие. Зачастую для данной цели применяется алюминий, кобальт и хром.
  3. Применение специальных протекторов и анодов. При контакте детали с водой происходит разрушение протектора, который образует защитное покрытие. Такая методика часто используется в производстве деталей для морских буровых установок и судов.

Промышленные способы обеспечения антикоррозийной защиты очень разнообразны. К ним относится и покрытие специальной стекловолоконной эмалью, и химическая защита, и многие другие.

Антикоррозийная защита материала в домашних условиях подразумевает применение ЛКМ-покрытий и химических средств. Свойства защитного плана обеспечивают сочетанием разных элементов: смол на основе силикона, ингибиторов, полимеров, металлической стружки и пудры.

Следует отметить, что перед окрашиванием детали, ее нужно обработать специальным преобразователем коррозии или грунтовкой, иначе ее эксплуатационные свойства будут быстро уменьшаться.

Сегодня в продаже встречается несколько разновидностей преобразователей ржавчины:

  1. Средства-грунтовки. Характеризуются высокой адгезией с металлическими поверхностями, способствуют выравниванию покрытия перед покраской. Во многих грунтовках содержатся ингибиторы, тормозящие коррозийные процессы. Кроме того, заблаговременное нанесение слоя грунтовки позволяет сэкономить на окрашивании.
  2. Химические препараты. Преобразуют окись железа в более безопасные вещества, которым не страшна коррозия. Такие средства называются стабилизаторами.
  3. Составы, преобразующие ржавчину в обычные соли.
  4. Масла и смолы, уплотняющие и связывающие ржавчину, обеспечивая ее нейтрализацию.

Специалисты советуют подбирать краску и грунтовку какого-то одного производителя, чтобы их химический состав не имел особых отличий.

Краски для покрытия металлических изделий

Краски, предназначенные для обработки металлических поверхностей, бывают обычными и термостойкими. В большинстве случаев применяются три типа составов: эпоксидные, акриловые и алкидные. Есть и специальные краски антикоррозийного типа, которые обладают следующими достоинствами:

  • эффективно защищают покрытие от атмосферных воздействий и перепадов температур;
  • с легкостью наносятся валиком, кисточкой или распылителем;
  • многие из них являются быстросохнущими;
  • обладают широким выбором расцветок;
  • отличаются долговечностью.

Что касается самых недорогих и доступных средств, то тут следует обратить внимание на обыкновенную серебрянку. В составе этого покрытия есть алюминиевая пудра, образующая защитную пленку на обработанном им изделии.

Этапы работ по борьбе с коррозией в быту

Методы борьбы с коррозией металлов предполагают определенную последовательность. Следует перечислить основные этапы этой работы:

  1. Таблица защита металлов от коррозииПеред тем как наносить преобразователь или грунтовую смесь, поверхность необходимо полностью очистить от маслянистых пятен, следов коррозии и различного рода загрязнений. Для этих мер можно воспользоваться болгаркой или щетками с металлическим ворсом.
  2. После этого можно приступать к нанесению слоя грунтовки, которая затем должна впитаться и как следует просохнуть.
  3. Далее на поверхность наносится пара слоев. Перед тем как наносить второй слой, нужно дождаться полного высыхания первого. В процессе работы обязательно нужно пользоваться защитными очками, перчатками и специальным респиратором, так как все применяемые вещества и составы являются токсичными.

Антикоррозийная защита металлических сплавов — очень непростой процесс. В промышленности он начинается на стадии расплавления стали. Производители ЛКМ-покрытий занимаются совершенствованием своей продукции, увеличивая ее долговечность и стойкость.

Коррозия это самопроизвольный процесс разрушения металлов под влиянием внешней среды.

Причиной коррозии является более низкая термодинамическая стабильность металлов, чем их соединений (оксидов, гид-роксидов, солей). Как и все самопроизвольные процессы, коррозия протекает с уменьшением энергии Гиббса системы. Химическая энергия реакции коррозийного разрушения металлов выделяется в виде теплоты и бесполезно рассеивается в пространстве.

По механизму протекания коррозийного процесса различают химическую коррозию и электрохимическую коррозию.

Химическая коррозия характерна для сред, не проводящих электрический ток. По условиям протекания коррозийного процесса различают:

Читать также:  Как ставить двойной выключатель

а) газовую коррозию — в газах, парах без конденсации влаги
на поверхности металла (обычно при высоких температурах);

б) жидкостную коррозию — в растворах неэлектролитов (аг
рессивных органических жидкостях).

Разрушение металлов при соприкосновении с электролитом с возникновением в системе электрического тока называется электрохимической коррозией.

Электрохимическая коррозия в основном характерна для сред, имеющих ионную проводимость:

а) в водных растворах солей, кислот, щелочей, морской воде;

б) в атмосфере любого влажного газа;

Радиоэлектронная аппаратура чаще всего подвержена воздействию атмосферы, содержащей влагу, следовательно, электрохимической коррозии. Роль электролита в таких условиях играет водная пленка на поверхности металла, в которой часто растворены электропроводящие примеси.

Как и в гальванических элементах, при электрохимической коррозии процесс взаимодействия металла с окислителем (кислород атмосферы, ионы Н+, Fe3+, NО2-, NO3-) включает анодное растворение металла, катодное восстановление окислителя, движение электронов в металле и ионов в растворе.

При контакте металла с другим менее активным металлом в кислой среде, например, железа с медью в соляной кислоте, возникает гальванический элемент:

Железо окисляется, отдавая электроны атомам меди, а на атомах меди восстанавливаются ионы водорода:

2Н3О+ + 2е = Н2 + Н2О.

Затем ионы ОН- соединяются с перешедшими в раствор ионами Fe2+:

Fe2+ + 2OH- = Fe(OH)2,

4Fe(OH)2 + 2H2O + O2 = 4Fe(OH)3.

Гидроксид железа (III) частично отщепляет воду и образует соединение, отвечающее по составу бурой ржавчине.

При соприкосновении металла с электролитом на его поверхности возникает множество микрогальванических элементов. Причиной их образования является наличие примесей у металлов и пленок на поверхности, неоднородность по химическому и фазовому составу сплавов. В таких микрогальванопа-рах анодами являются частицы металла, а катодами — загрязнения, примеси и вообще металлы, имеющие положительный потенциал.

В микрогальваническом элементе на аноде протекает процесс окисления металлов, а на катоде может наблюдаться ионизация кислорода или восстановление водорода.

Если коррозия протекает в кислой среде, то на катоде вос станавливается водород. Этот процесс называется коррозией с водородной деполяризацией. В наиболее простом случае она может быть представлена уравнениями:

2Н3О+ + 2е = Н2 + Н2О.

Если окислителем является кислород, то коррозия протекает с поглощением кислорода или с кислородной деполяризацией и выражается уравнением:

К: О2 + 2Н2О + 4е = 4ОН- при рН > 7 или О2 + 4H+ + 4е = 2Н2О при рН 0. А так как ЭДС определяется как разность потенциалов окислителя и восстановителя (формула (7.3)), то это возможно, когда jk > ja.

На скорость и характер коррозийных процессов оказывает влияние как природа металла, так и характер коррозийной среды.

Окислители играют двойную роль в коррозийных процессах. С одной стороны, они могут восстанавливаться и этим ускорять коррозию металлов, а с другой стороны — вызывать пассивирование металлов с образованием оксидных или других защитных слоев, которые тормозят процесс коррозии.

Выбор способов защиты от коррозии определяется характером коррозии и условиями ее протекания. Все методы защиты делятся на группы:

1) изменение природы металла (легирование);

2) защитные покрытия;

3) электрохимическая защита;

4) изменение свойств коррозийной среды.

Способы защиты металлов от коррозии. Легирование — эффективный метод повышения коррозийной стойкости металлов. При легировании вводят компоненты, вызывающие наряду с пассивированием металла, повышение его жаростойкости и жаропрочности. Это такие добавки, как хром, никель, вольфрам и т. п.

Защитные покрытия бывают металлические и неметаллические. Металлические покрытия, в свою очередь, разделяются на анодные (металл-покрытие более активен, чем защищаемый) и катодные (металл-покрытие менее активен, чем защищаемый).

Более эффективными являются анодные покрытия, так как при нарушении их целостности будет корродировать покрытие, а не защищаемый металл. Например, для железа анодным покрытием будут Zn, Сr и др. Примером катодного покрытия могут служить Sn, Ag, Ni.

Лакокрасочные покрытия, эмали относятся к неметаллическим покрытиям. Они должны быть стойкими к высоким температурам, кислотам, щелочам, бензину и другим агрессивным факторам.

К электрохимическому способу защиты металлов от коррозии относят протекторную и катодную защиту.

Протекторная защита наиболее часто используется для предохранения конструкций (подземных трубопроводов, кабелей, корпусов судов), находящихся в среде электролита (морской воде, почве). Электрохимическая защита осуществляется присоединением к защищаемой конструкции металла с более отрицательным значением электродного потенциала, который, выполняя роль анода, разрушается.

Сущность катодной защиты заключается в том, что защищаемые изделия подключают к отрицательному полюсу внешнего источника тока. В электродной среде изделие становится катодом, что и предотвращает его разрушение, а анодом служит вспомогательный электрод.

Изменение свойств коррозийной среды. Снизить агрессивность коррозийной среды можно дезаэрацией (удалением) кислорода, изменением рН среды, введением ингибиторов. Ингибиторы, адсорбируясь на коррозийной поверхности, тормозят процессы, тем самым уменьшая скорость коррозии.

Оставить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *