Сварка плавящимся электродом в среде защитных газов

Сварка плавящимся электродом в среде защитных газов

Сварка плавящимся электродом в среде защитных газов

Сварка плавящимся электродом в среде защитных газов

Сварка плавящимся электродом в среде защитных газов

Сварка плавящимся электродом в среде защитных газов

Сварка плавящимся электродом в среде защитных газов

Сварка плавящимся электродом в среде защитных газов

I. Введение
Анализ рынка оборудования для дуговой сварки плавлением, сложившегося на рубеже веков, показывает, что наиболее распространенным способом сварки в промышленности продолжает оставаться полуавтоматическая сварка плавящимся электродом в среде защитных газов (MIG/MAG процесс). За последнее десятилетие ХХ века доля металла, наплавленного ручной дуговой сваркой, снизилась в 2 раза – с 22,6% до 11,2%, в то время как доля сварки в защитных газах возросла с 64,3% до 75,7%. Это наглядно видно на диаграммах, приведенных на Рис. 1, 2 [3].

Сварка плавящимся электродом в среде защитных газов

Есть основания полагать, что в недалеком будущем доля ручной дуговой сварки стабилизируется на уровне 10 – 12%, доля полуавтоматической сварки сплошной проволокой – на уровне 40 – 50%, доля полуавтоматической сварки порошковой проволокой – на уровне 30 – 40%, доля сварки под флюсом – на уровне 5 – 6%. При этом MIG/MAG процесс используется не только при механизированной, но и при автоматизированной, и роботизированной сварке.

II. Общее понятия о MIG/MAG сварке

Сварка плавящимся электродом в среде защитных газов

Рис. 3. Общая схема MIG/MAG сварки и оборудования

MIG/MAG – Metal Inert/Active Gas – электродуговая сварка плавящимся металлическим электродом (проволокой) в среде инертного/активного газа с автоматической подачей присадочной проволоки. Это полуавтоматическая сварка в среде защитного газа (углекислого или другого инертного газа) – наиболее универсальный и распространенный в промышленности метод сварки. Иногда этот метод сварки обозначают GMA (Gas Metal Arc) или GMAW (Gas Metal Arc Welding). Применение термина «полуавтоматическая» не вполне корректно, поскольку речь идет об автоматизации только подачи присадочной проволоки, а сам метод MIG/MAG с успехом применяется при автоматизированной и роботизированной сварке. Словосочетание «сварка в углекислом газе», к которому привыкли многие специалисты, умышленно упущено, так как при этом методе все чаще используются многокомпонентные газовые смеси, в состав которых помимо углекислого газа могут входить аргон, кислород, гелий, азот и другие газы.

В зависимости от свариваемого металла и его толщины в качестве защитных газов используют инертные, активные газы или их смеси. В силу физических особенностей стабильность дуги и ее технологические свойства выше при использовании постоянного тока обратной полярности. При использовании постоянного тока прямой полярности количество расплавляемого электродного металла увеличивается на 25 – 30%, но резко снижается стабильность дуги и повышаются потери металла на разбрызгивание. Применение переменного тока невозможно из-за нестабильного горения дуги.

При сварке плавящимся электродом шов образуется за счет проплавления основного металла и расплавления дополнительного металла – электродной проволоки. Поэтому форма и размеры шва помимо прочего (скорости сварки, пространственного положения электрода и изделия и др.) зависят также от характера расплавления и переноса электродного металла в сварочную ванну. Характер переноса электродного металла определяется в основном материалом электрода, составом защитного газа, плотностью сварочного тока и рядом других факторов.

При традиционном способе сварки можно выделить три основные формы расплавления электрода и переноса электродного металла в сварочную ванну. Процесс электродуговой сварки с периодическими короткими замыканиями характерен для сварки электродными проволоками диаметром 0,5 – 1,6 мм при короткой дуге с напряжением 15 – 22 В. После очередного короткого замыкания (1 и 2 на рис. 4-1) силой поверхностного натяжения расплавленный металл на торце электрода стягивается в каплю. В результате длина и напряжение дуги становятся максимальными. Во все стадии процесса скорость подачи электродной проволоки постоянна, а скорость ее плавления изменяется и в периоды 3 и 4 меньше скорости подачи.

Поэтому торец электрода с каплей приближается к сварочной ванне (длина дуги и ее напряжение уменьшаются) до короткого замыкания (5 на Рис. 4-1). При коротком замыкании резко возрастает сварочный ток и как результат этого увеличивается сжимающее действие электромагнитных сил, совместное действие которых разрывает перемычку жидкого металла между электродом и изделием. Во время короткого замыкания капля расплавленного электродного металла переходит в сварочную ванну. Далее процесс повторяется. Частота периодических замыканий дугового промежутка может изменяться впределах 90 – 450 в секунду. Для каждого диаметра электродной проволоки в зависимости от материала, защитного газа и т.д. существует диапазон сварочных токов, в котором возможен процесс сварки с короткими замыканиями. При оптимальных параметрах процесса сварка возможна в различных пространственных положениях, а потери электродного металла на разбрызгивание не превышают 7%. Увеличение плотности сварочного тока и длины (напряжения) дуги ведет к изменению характера расплавления и переноса электродного металла, перехода от сварки короткой дугой с короткими замыканиями к процессу с редкими короткими замыканиями или без них. В сварочную ванну электродный металл переносится нерегулярно, отдельными крупными каплями различного размера (Рис. 4-2), хорошо заметными невооруженным глазом.

Сварка плавящимся электродом в среде защитных газов

Сварка плавящимся электродом в среде защитных газовСварка плавящимся электродом в среде защитных газов

Рис. 4. Основные формы расплавления и переноса электродного металла при MIG/MAG сварке: 1 – короткими замыканиями, 2 – капельный, 3 – струйный

Сварка плавящимся электродом в среде защитных газов

Сварка плавящимся электродом в среде защитных газовСварка плавящимся электродом в среде защитных газов

Рис. 5. Режим струйного переноса электродного металла при MIG/MAG сварке и форма сварного шва: 1 – нижний предел сварочного тока, 2 – верхний предел сварочного тока.

При достаточно высоких плотностях постоянного по величине (без импульсов или с импульсами) сварочного тока обратной полярности и при горении дуги в инертных газах может наблюдаться очень мелкокапельный перенос электродного металла. Название «струйный» он получил потому, что при его наблюдении невооруженным глазом создается впечатление, что расплавленный металл стекает в сварочную ванну с торца электрода непрерывной струей. Изменение характера переноса электродного металла с капельного на струйный происходит при увеличении сварочного тока до «критического» для данного диаметра электрода. Значение критического тока уменьшается при активировании электрода (нанесении на его поверхность тем или иным способом некоторых легкоионизирующих веществ), увеличении вылета электрода. Изменение состава защитного газа также влияет на значение критического тока. Например, добавка в аргон до 5% кислорода снижает значение критического тока. При сварке в углекислом газе без применения специальных мер получить струйный перенос электродного металла невозможно. Он не получен и при использовании тока прямой полярности. При переходе к струйному переносу поток газов и металла от электрода в сторону сварочной ванны резко интенсифицируется благодаря сжимающему действию электромагнитных сил. В результате под дугой уменьшается прослойка жидкого металла, в сварочной ванне появляется местное углубление. Повышается теплопередача к основному металлу, и шов приобретает специфическую форму с повышенной глубиной проплавления по его оси. При струйном переносе дуга очень стабильна, колебаний сварочного тока и напряжений не наблюдается. Сварка возможна во всех пространственных положениях.

III. MIG/MAG сварка в газовых смесях

Если рассматривать применение сварочных газов только с точки зрения получения наилучшей защиты реакционного пространства сварочной дуги от наружного воздуха, то оптимальным защитным газом будет аргон. Аргон тяжелее воздуха (плотность 1,78 кг/м3), обладает низким потенциалом ионизации (15,7 В), не вступает в химические взаимодействия с другими элементами и в достаточных количествах содержится в свободном виде (0,9325% об., или 0,00007% вес.) [7], что позволяет получать его из воздуха в ректификационных установках. В настоящее время аргон широко применяется в качестве защитного газа при сварке алюминиевых сплавов и высоколегированных сталей (особенно нержавеющих хромоникелевых). Однако при сварке углеродистых и низколегированных сталей основных структурных классов на российских предприятиях основным защитным газом для MIG/MAG процесса продолжает оставаться углекислый газ СО2. Между тем применение аргона позволяет повысить температуру сварочной дуги, что улучшает проплавление сварного шва, увеличивая производительность сварки в целом. При этом проплавление приобретает «кинжальную» форму, что позволяет выполнять однопроходную сварку в щелевую разделку металла бóльших толщин. При сварке в среде аргона (как и иных инертных газов) минимизируется выгорание активных легирующих элементов, что позволяет использовать более дешевые сварочные проволоки. Однако применение углекислого газа при сварке плавящимся электродом имеет свои преимущества, связанные прежде всего с химико-металлургическими процессами, происходящими при сварке. Углекислый газ имеет высокую плотность (приблизительно в 1,5 раза выше, чем у воздуха) и сам по себе способен обеспечить качественную защиту реакционного пространства; его потенциал ионизации, равный 14,3 В, дает возможность использовать при сварке эффект диссоциации молекул углекислого газа на оксид углерода СО и свободный кислород:

В качестве защитных газовых смесей для сварки плавящимся электродом во всех промышленно развитых странах давно уже не применяют чистый углекислый газ. Для этого используются газовые смеси. От выбора защитной газовой смеси зависит качество сварки. Так, смеси, содержащие в своем составе гелий, повышают температуру сварочной дуги, что улучшает проплавление сварного шва, увеличивая производительность сварки в целом. Повышение производительности сварочных работ при применении газовых смесей составляет не менее 30-50%. Гораздо более значителен эффект от их применения по предприятию в целом. Например, применение газовых смесей при полуавтоматической сварке металла, подлежащего дальнейшей покраске, не требует последующей зачистки сварного шва и околошовной зоны. Сварной шов получается формы и чистоты вполне пригодной для дальнейшей покраски. Это обеспечивает значительное повышение производительности труда при дальнейших работах со сваренными изделиями на предприятии. Кроме того, применение газовых смесей при полуавтоматической сварке обеспечивает еще и повышенные свойства металла сварного соединения, что в ряде случаев позволяет отказаться от последующей термообработки, что всегда трудоемко. Данные защитные газовые смеси применимы для электродуговой сварки как углеродистых, так и легированных сталей. Рассмотрим составы газовых смесей, чаще всего применяемых при дуговой сварке [3].

Читать также:  Теплоотдача чугуна и алюминия

Защитные газовые смеси для сварки неплавящимся вольфрамовым электродом

Газовая смесь НН-1 (Helishield H3) . Это инертная газовая смесь, состоящая из 30% гелия и 70% аргона. Дает более эффективный нагрев, чем аргон. Увеличивается проплавление и скорость сварки, более ровная поверхность шва.

Газовая смесь НН-2 (Helishield H5) . Это инертная газовая смесь, состоящая из 50% гелия и 50% аргона. Наиболее универсальная газовая смесь, подходит для сварки материалов практически любой толщины.

Защитные газовые смеси для сварки плавящимся электродом

Газовая смесь К-2 (Pureshield P31) . Это наиболее универсальная из всех смесей для углеродисто-конструкционных сталей. Состоит из 82% аргона и 18% углекислого газа. Подходит практически для всех типов материалов.

Газовая смесь К-3.1 (Argoshield 5). Эта смесь состоит из 92% аргона, 6% углекислого газа, 2% кислорода. Разработана для листовых и узких профильных (сортовых) сталей. Дает устойчивую дугу с низ-ким уровнем разбрызгивания, небольшим усилением и плоским гладким профилем сварного шва. Смесь превосходна для глубокого провара и идеально подходит для сварки листового металла.

Газовая смесь К-3.2 (Argoshield TC) . Это смесь 86% аргона, 12% углекислого газа, 2% кислорода. Дает устойчивую дугу с широкой зоной нагрева и хорошим проваром профиля, подходит для глубокого провара, сварки коротких швов и для наплавки. Может использоваться для сварки во всех положениях. Идеально подходит для ручной, автоматической и сварки с применением робота-автомата.

Газовая смесь К-3.3 (Argoshield 20) . Это смесь 78% аргона, 20% углекислого газа, 2% кислорода. Специально разработана для глубокого провара широкого ассортимента профилей. Смесь хорошо подходит для наплавки и сварки толстых прокатных (сортовых) сталей.

Газовая смесь НП-1 (Helishield HI) . Это смесь 85% гелия, 13,5% аргона, 1,5% углекислого газа. Данная смесь дает великолепные чистые швы с гладким профилем и незначительное, либо не дает совсем, окисление поверхности. Идеально подходит для тонких материалов, где высокая скорость прохода дает низкий уровень деформации (искривления) металла.

Газовая смесь НП-2 (Helishield H7) . Это смесь 55% гелия, 43% аргона, 2% углекислого газа. Придает низкий уровень сварочному армированию и обеспечивает высокую скорость сварки. Смесь хорошо подходит для автоматической сварки и для применения роботов-автоматов с использованием широкого спектра толщин свариваемых материалов.

Газовая смесь НП-3 (Helishield H101) . Это смесь 38% гелия, 60% аргона, 2% углекислого газа. Придает стабильность дуге, что обеспечивает низкий уровень разбрызгивания и снижает вероятность появления дефектов шва. Газовая смесь НП-3 рекомендуется для сварки материалов толщиной свыше 9 мм. Состав газовой смеси оказывает влияние практически на все параметры режима сварки. Результаты исследований, проведенных ЗАО НПФ «Инженерный и технологический сервис» (Санкт-Петербург) представлены в Таблице 1.

Таблица 1. Влияние газовой смеси на параметры сварки (сварка проволокой Св-10ГСМТ ø 1,4 мм)

Процесс сварки в защитном газе, gas metal arc welding (GMAW), был разработан и стал коммерчески доступен в 1948 году, хотя основные понятия были введены в 20-х годах XX века. Сварка в защитном газе плавящимся электродом, metal inert gas (MIG), была запатентована в США в 1949 году для сварки алюминия. Дуга и сварочная ванна формировались из чистого токопроводящего электрода и защищались гелием. В 1952 году процесс стал популярен в Великобритании. В качестве защитного газа для сварки алюминия стали использовать аргон, а для углеродистых сталей — углекислый газ и смесь аргона с углекислым газом. Углекислый газ относится к активным газам, и, соответственно, процесс стал называться metal active gas (MAG) processes.

GMAW процесс использует как с полуавтоматическим, так и с автоматическим оборудованием. Этим процессом могут свариваться большинство металлов, а при низких энергетических показателях процесса сварка может производиться во всех пространственных положениях. GMAW — экономный процесс, который практически не требует очистки сварного шва. Уменьшаются неровности шва и обработка металла шва минимальная по сравнению со сваркой покрытыми электродами.

MIG/MAG — дуговая сварка плавящимся металлическим электродом (проволокой) в среде инертного/активного газа с непрерывной автоматической подачей электродной проволоки. Зона сварки защищается извне подаваемым газом. GMA сварка с успехом применяется при автоматизированной и роботизированной сварке. Наибольшее распространение получила полуавтоматическая сварка, как наиболее универсальная. Иногда этот метод сварки обозначают GMA (Gas Metal Arc). Применение термина не вполне корректно, поскольку оборудование предусматривает автоматическое саморегулирование дуги и скорость плавления электрода. Единственное ручное управление, требуемое от сварщика при полуавтоматической сварке, — позиционирование и перемещение с определенной скоростью сварочной горелки. Длина дуги и сварочный ток поддерживаются автоматически.

Управление процессом сварки и режимом дуги осуществляется тремя основными элементами установки для сварки в защитном газе:

1) сварочная горелка и подающий рукав;

2) механизм подачи проволоки;

3) источник сварочного тока.

Сварочная горелка и подающий рукав выполняют три функции — подают защитный газ в область горения дуги, подают сварочную проволоку к контактному наконечнику и подводят сварочный ток к контактному наконечнику. На рукоятке горелки имеется выключатель, нажатие на который включает и выключает сварочный ток, подачу проволоки и подачу газа.

Механизм подачи сварочной проволоки и источник сварочного тока для обеспечения автоматического саморегулирования длины дуги соединены обратной связью. Для MIG/MAG сварки применяются два типа источников сварочного тока: источник с постоянным (неизменным) током и источник с постоянным (неизменным) напряжением.

Источник сварочного тока. Источник сварочного тока поставляет электроэнергию дуге, горящей между электродом и заготовкой. В большинстве случаев для GMAW процессов используется постоянный ток обратной полярности, т. е. плюс на электроде, минус на изделии.

Большинство установок MIG/MAG сварки имеет источник сварочного тока с постоянным (неизменным) напряжением и с постоянной скоростью подачи электродной проволоки, т. е. блок питания поддерживает постоянное напряжение в процессе сварки. Основная причина широкого распространения таких источников сварочного тока — самокорректирующаяся длина дуги, присущая этой системе.

Для саморегулирующих систем источник питания должен иметь жесткую, пологопадающую характеристику. Напряжение дуги задается установкой выходного напряжения в блоке питания. Скорость подачи электродной проволоки во время сварки неизменна. Наибольшее распространение этот вид источника питания получил в установках полуавтоматической (ручной) сварки, т. е. когда происходят быстрые и частые изменения длины дуги. При этом даже незначительное изменение длины дуги вызывает, соответственно, незначительное изменение напряжения на дуге, dU. Это, в свою очередь, вызывает значительное изменение сварочного тока, dI, и как следствие изменяется скорость плавления проволоки.

Рисунок 4 схематически иллюстрирует механизм автокоррекции. Когда сварочная горелка отодвигается от изделия, увеличивается расстояние L между сварочной проволокой и изделием, при этом увеличивается напряжение на дуге.

Сварка плавящимся электродом в среде защитных газов

Желаемая длина дуги выбирается путем регулирования выходного напряжения источника сварочного тока, и никакие другие изменения в процессе сварки не требуются. Скорость подачи проволоки задается сварщиком до начала сварки и может регулироваться в больших пределах.

Некоторые установки GMAW сварки, тем не менее, используют блоки питания с постоянным (неизменным) током. При этом источник сварочного тока имеет крутопадающую характеристику, т. е. незначительное изменение длины дуги вызывает незначительное изменение сварочного тока, но значительное изменение напряжения на дуге. В ответ на изменение напряжения на дуге система изменяет скорость подачи проволоки, увеличивая или уменьшая ее.

Сварочный ток устанавливается соответствующей установкой в блоке питания. Длина дуги и, соответственно, напряжение на дуге управляются и поддерживаются автоматической подачей электродной проволоки. Этот тип сварки лучше всего подходит при сварке электродной проволокой большого диаметра установками автоматической сварки, когда не требуется быстрого изменения скорости подачи проволоки. Система несаморегулирующаяся.

Вольт-амперная характеристика источника сварочного тока имеет наклон. Наклон кривой отражает характеристику блока питания и измеряется в омах, т. е.

Наклон = dU/dI = Ом.

Это уравнение показывает, что наклон вольт-амперной характеристики эквивалентен сопротивлению. Тем не менее, наклон характеристики обычно определяют как изменение напряжения при изменении тока на 100 А. Например, наклон 0,03 Ом представляет изменение напряжения на 3 В при изменении сварочного тока на 100 А.

Читать также:  Зигзагообразные антенны дмв своими руками

Наклон характеристики можно вычислить, зная напряжение холостого хода источника питания, сварочный ток и напряжение на зажимах источника питания при сварке, например если напряжение холостого хода Uxx = 48 В, а рабочей точке соответствуют 28 В и 200 А, то наклон: (48 — 28)/200 = 10 В на 100 А.

От наклона вольт-амперной характеристики источника питания зависит ток короткого замыкания: чем больше наклон, тем меньше ток короткого замыкания.

Сварочная горелка. Сварочная горелка предназначена для подачи сварочной проволоки и защитного газа в зону сварки и передачи сварочного тока сварочной проволоке. Существует множество разновидностей горелок, как с воздушным, так и с водяным охлаждением, с прямыми и изогнутыми соплами. Горелки с изогнутыми соплами облегчают выполнение сварных швов в труднодоступных местах и углах.

Основные детали горелок (рис. 5):

    • контактная трубка;
    • сопло;
    • подающий рукав;
    • направляющий канал;
    • выключатель.

    Контактная трубка, обычно выполненная из меди или медного сплава, предназначена для передачи сварочного тока электродной проволоке и направления проволоки к месту сварки. Контактная трубка присоединяется к сварочному кабелю. Поскольку электродная пpoвoлка движется непрерывно, втулка имеет скользящий контакт для передачи сварочного тока с кабеля на электрод. Большое значение имеет качество внутренней поверхности трубки, так как электрод должен легко скользить в ней, но в то же время иметь хороший контакт. Для минимизации нагрева корпуса горелки периодически по мере износа контактной трубки ее необходимо заменять. Для каждого диаметра электродной проволоки предназначена своя контактная втулка.

    Сварка плавящимся электродом в среде защитных газов

    Сопло равномерно направляет струю защитного газ в зону сварки. Равномерность потока чрезвычайно важна в обеспечении требуемой защиты расплавленного металла сварочной ванны от воздействия атмосферы. Размер сопла выбирают в зависимости от режима сварки, т. е. сопло большого диаметра предназначено для сварки с большой плотностью сварочного тока, когда сварочная ванна имеет большой размер.

    Подающий рукав и направляющий канал подключаются к механизму подачи электродной (сварочной) проволоки и подают электродную проволоку от механизма подачи к сварочной горелке. Для уменьшения трения и облегчения скольжения электронной проволоки направляющий канал подающего рукава имеет тефлоновое покрытие. При выполнении сварочных работ не допускается скручивать кольцами подающий рукав и сильно изгибать его. Стандартная длина подающего рукава 3-4 м. Более длинные поставляются по специальному заказу.

    При большой длине подающего рукава иногда применяется горелка с небольшим встроенным механизмом подачи проволоки. Такая система позволяет тянуть проволоку от удаленного механизма подачи проволоки.

    Электродная проволока. Сварка в защитном газе производится сплошной или порошковой проволокой диаметром 0,5-2,4 мм (в аргоне — до 4 мм). Выбор электродной проволоки производится в зависимости от материала свариваемого изделия и режима сварки. Экономически выгодно использовать предельно допустимый режим сварки. В табл. 10 приведен выбор, а в табл. 11 — краткая характеристика некоторых марок электродной проволоки.

    Для GMAW процессов сварки наиболее часто применяется проволока СВ08Г2С (ГОСТ 2246-70), имеющая следующий состав: углерод — 0,05-0,11%; марганец — 1,8-2,10%; кремний — 0,7-0,95%; сера — . Механизм подачи проволоки предназначен для работы в составе сварочных полуавтоматов при проведении сварочных работ в производстве, где необходима сварка деталей, узлов и сборок, изготовленных из углеродистых и легированных сталей.

    Конструктивно механизм подачи проволоки выполнен в виде переносного устройства. На передней панели расположены:

      • индикатор , сигнализирующий о включении механизма подачи проволоки, исправном состоянии и готовности к работе;
        • регулятор для регулирования выходного напряжения сварочного выпрямителя;
          • регулятор скорости подачи электродной проволоки;
            • переключатель прерывистого/непрерывного режима сварки;
              • переключатель для выбора режима управления с кнопки на сварочной горелке (двухтактный или четырехтактный режим);
                • кнопка для открывания отсекателя газа и продува шланга подачи газа перед работой;
                • выходная розетка для присоединения фидера сварочной горелки.

                На боковой панели располагаются ручки управления процессом сварки:

                  • регуляторы и для регулирования временных параметров прерывистого режима сварки;
                    • регулятор для установки времени подачи газа перед началом процесса сварки ( );
                      • регулятор для установки времени подачи газа после завершения процесса сварки ( );
                      • регулятор для установки времени заварки кратера ( ) .

                      На задней панели механизма подачи проволоки размещены:

                        • тумблер выключения питания;
                          • вилка для подачи питания и осуществления управления источником сварочного тока;
                            • вилка для подключения выходного кабеля положительной полярности источника сварочного тока;
                              • отверстие для подачи электродной проволоки с катушки внутрь механизма;
                              • втулка для присоединения резинового шланга от баллона с защитным газом (на этой втулке с помощью накидной гайки крепится ниппель, на который непосредственно крепится шланг подачи газа) .

                              На правой боковой стенке под откидной крышкой моноблока расположен люк для осуществления заправки электродной проволоки с катушки через ролики в горелку. Внутри этого люка на стенке расположена кнопка для включения мотора при заправке проволоки в подающий механизм.

                              Функциональная схема механизма подачи проволоки состоит из трех взаимосвязанных модулей (рис. 6):

                                • ПУ МПП — пульт управления механизмом подачи проволоки;
                                  • MP — мотор-редуктор;
                                    • ОГ — отсекатель газа.

                                    Сварка плавящимся электродом в среде защитных газов

                                    В зависимости от рабочего состояния механизма подачи проволоки ПУ МПП выдает на индикатор И1 сигнал световой информации о подаче электропитания.

                                    ПУ МПП управляет работой MP и ОГ в зависимости от установок оператора и команд, поступающих от сварочной горелки. ОГ и MP по сигналам ПУ МПП обеспечивают подачу через выходной разъем (BP) и сварочную горелку газа и электродной проволоки. Проволока подается с оптимальным начальным ускорением и установленной оператором необходимой для полуавтоматической сварки рабочей скоростью. С помощью кнопки на сварочной горелке осуществляется управление работой MP и по командам оператора обеспечивается включение и выключение сварочного тока, а также подача газа и электродной проволоки.

                                    Применение механизма подачи проволоки при проведении сварочных работ обеспечивает:

                                      • плавное регулирование скорости подачи электродной проволоки;
                                        • стабильность процесса подачи электродной проволоки;
                                          • простоту заварки кратера сварного шва с использованием режима ;
                                            • возможность работы в продолжительном режиме, а также в режиме регулируемых коротких швов;
                                            • возможность двухтактного (путем нажатия и удержания кнопки управления в течение сварочного цикла) и четырехтактного (кратковременным включением и выключением кнопки управления в начале и в конце каждого сварочного цикла) управления процессом подачи проволоки.

                                            Перед началом сварки, сварщик должен выбрать размер электрода (диаметр сварочной проволоки), проверить соответствие контактного наконечника горелки выдранному диаметру проволоки, установить напряжение, интенсивность газового потока, скорость подачи электродной проволоки. До ввода сварочной проволоки в горелку необходимо проверить, что подающий ролик, направляющий канал и токоподводящее сопло соответствуют выбранной проволоке. Усилие прижима проволоки должно быть таким, чтобы выходящая через горелку проволока допускала легкое торможение пальцами. Вылет электрода устанавливается в зависимости от диаметра электродной проволоки.

                                            При полуавтоматическом MIG/MAG способе сварка производится сплошной или порошковой проволокой в среде защитного газа. Конструктивно аппараты состоят из выпрямителя с жесткой внешней характеристикой и механизма подачи сварочной проволоки, выполненных или в одном корпусе (компактное решение), или раздельно. В качестве сварочных материалов применяются защитные газы и сварочная проволока соответствующего химического состава (как правило, в катушках). Способ отличается высокой производительностью. Возможна сварка углеродистых и легированных сталей, алюминиевых сплавов и нержавеющей стали.

                                            Современные установки для качественной MIG/MAG сварки обеспечивают:

                                            Схема процесса (GMAW процесс)

                                            Сварка плавящимся электродом в защитном газе — это процесс соединения металлов плавлением электрической дугой, горящей между непрерывно подаваемым плавящимся электродом и изделием. Зона горения дуги защищается с помощью газа (рис. 7.2). Защитный газ и подвижный плавящийся электрод — два обязательных участника этого процесса.

                                            Большинство металлов имеют высокую тенденцию к присоединению кислорода (образуют оксиды) и в меньшей степени

                                            Сварка плавящимся электродом в среде защитных газов

                                            Рис. 7.2. Сварка плавящимся электродом в защитном газе к присоединению азота (образуют нитриды). Кислород также реагирует с углеродом, содержащимся в металле, с образованием окиси углерода. Оксиды, нитриды и окись углерода при растворении в металле шва образуют дефекты сварного шва. Воздействие атмосферы на расплавленный металл очень велико, так как в ней содержится около 80 % азота и примерно 20 % кислорода. Основная функция защитного газа — исключить контакт расплавленного металла с окружающей атмосферой.

                                            Кроме защиты сварочной ванны, защитный газ влияет на:

                                            • • характеристику дуги;
                                            • • способ переноса электродного металла;
                                            • • глубину проплавления и профиль сварного шва;
                                            • • производительность сварки;
                                            • • склонность к прожогу;
                                            • • степень зачистки сварного шва.

                                            При сварке плавящимся электродом шов образуется за счет проплавления основного металла и расплавления дополнительного металла — электродной проволоки. Поэтому форма и размеры шва помимо прочего (скорости сварки, пространственного положения электрода и изделия) зависят также от характера расплавления и переноса электродного металла в сварочную ванну. Характер переноса электродного металла определяется в основном материалом электрода, составом защитного газа, плотностью сварочного тока и рядом других факторов.

                                            Читать также:  Рейтинг полировальных машинок для автомобиля

                                            Характер переноса расплавленного металла имеет большое значение для качественного формирования сварного шва при сварке плавящимся электродом в защитном газе. Управляя этим процессом различными способами (используя специальные сварочные процессы), можно всегда получить качественное сварное соединение. Можно выделить несколько основных форм расплавления электрода и переноса электродного металла в сварочную ванну:

                                            • • циклический режим сварки короткой дугой без разбрызгивания;
                                            • • режим сварки оптимизированной короткой дугой;
                                            • • крупнокапельный процесс сварки;
                                            • • режим импульсной сварки;
                                            • • режим струйного (Spray) переноса металла;
                                            • • режим непрерывного вращающегося переноса металла (ротационный перенос).

                                            Режим струйного и крупнокапельного, а также непрерывного вращающегося переноса металла связан со сравнительно высокой энергией дуги и обычно ограничивается сваркой в нижнем и горизонтальном положении металла толщиной более 3 мм. Циклический режим сварки короткой дугой без разбрызгивания и импульсная сварка имеют низкие энергетические показатели, но обычно позволяют сваривать металл толщиной до 3 мм во всех пространственных положениях.

                                            Циклический режим сварки короткой дугой без разбрызгивания (процесс сварки с периодическими короткими замыканиями). Данный процесс сварки характерен для сварки электродными проволоками диаметром 0,5. 1,6 мм при короткой дуге с напряжением 15. 22 В и токе 100. 200 А.

                                            После очередного короткого замыкания силой поверхностного натяжения расплавленный металл на торце электрода стягивается в каплю, приближая ее к правильной сфере, создавая тем самым благоприятные условия для плавного объединения со сварочной ванной. В результате длина и напряжение дуги становятся максимальными.

                                            Во всех стадиях процесса скорость подачи электродной проволоки постоянна, а скорость ее плавления изменяется и меньше скорости подачи. Поэтому торец электрода с каплей приближается к сварочной ванне (длина дуги и ее напряжение уменьшаются) до короткого замыкания. Во время короткого замыкания капля расплавленного электродного металла переходит в сварочную ванну. Далее процесс повторяется.

                                            При коротком замыкании резко возрастает сварочный ток — до 150. 200 А и как результат этого увеличивается сжимающее действие электромагнитных сил, совместное действие которых разрывает перемычку жидкого металла между электродом и изделием. Капля мгновенно отрывается, обычно разрушаясь и разлетаясь в стороны, что приводит к разбрызгиванию. Кроме того, ток такой величины, пытаясь пройти через узкую перемычку, образовавшуюся между каплей и ванной, приводит к выплеску металла.

                                            Режим сварки оптимизированной короткой дугой. Процесс сочетает в себе циклический режим сварки короткой дугой и очень высокую скорость подачи сварочной проволоки, что позволяет использовать короткую и мощную дугу (напряжение на дуге до 26 В при токе до 300 А). Данный режим позволяет получать сварные соединения с минимальным тепловложением и низкой степенью окисления наплавленного металла.

                                            Крупнокапельный процесс сварки. Увеличение плотности сварочного тока и длины (напряжения) дуги (напряжение на дуге от 22 до 28 В и ток от 200 до 290 А) ведет к изменению характера расплавления и переноса электродного металла, переходу от сварки короткой дугой с короткими замыканиями к процессу с редкими замыканиями или без них. В сварочную ванну электродный металл подается нерегулярно, отдельными крупными каплями различного размера, хорошо заметными невооруженным глазом. При этом ухудшаются технологические свойства дуги, затрудняется сварка в потолочном положении, а потери электродного металла на угар и разбрызгивание возрастают до 15 %. Крупнокапельный процесс сварки характеризуется некачественным формированием сварного шва.

                                            Режим импульсной сварки. Для улучшения технологических свойств дуги применяют периодическое изменение ее мгновенной мощности — импульсно-дуговая сварка. Теплота, выделяемая основной дугой, недостаточна для плавления электродной проволоки со скоростью, равной скорости ее подачи. Вследствие этого длина дугового промежутка уменьшается.

                                            Под действием импульса тока происходит ускоренное расплавление электрода, обеспечивающее формирование капли на его конце. Резкое увеличение электродинамических сил сужает шейку капли и сбрасывает ее в направлении сварочной ванны в любом пространственном положении, т. е. режим импульсной сварки — режим, при котором капли расплавленного металла принудительно отделяются электрическими импульсами. За счет этого на токах, соответствующих крупнокапельному переносу, можно формировать качественные сварные швы, подобно циклическому режиму сварки короткой дугой без разбрызгивания.

                                            Импульсный режим использует одиночные импульсы или группу импульсов с одинаковыми или различными параметрами. В последнем случае первый или первые импульсы ускоряют расплавление электрода, а последующие сбрасывают каплю электродного металла в сварочную ванну. За счет этого металл переносится порциями мелких капель и без разбрызгивания. Устойчивость режима импульсной сварки зависит от соотношения основных параметров (величины и длительности импульсов и пауз). Соответствующим подбором тока основной дуги и импульса можно повысить скорость расплавления электродной проволоки, изменить форму и размеры шва, а также уменьшить нижний предел сварочного тока, обеспечивающий устойчивое горение дуги.

                                            Импульсный режим обеспечивает более высокий коэффициент тепловложения в наплавленный металл, чем циклический режим сварки короткой дугой без разбрызгивания, и осуществляется при напряжении на дуге от 28 до 35 В и токах от 300 до 350 А.

                                            Режим струйного переноса металла. При достаточно высоких плотностях постоянного по величине (без импульсов или с импульсами) сварочного тока обратной полярности и при горении дуги в инертных газах (содержание аргона не менее 80 %) может наблюдаться очень мелкокапельный перенос электродного металла. Название «струйный» он получил потому, что при его наблюдении невооруженным глазом создается впечатление, что расплавленный металл стекает в сварочную ванну с торца электрода непрерывной струей.

                                            Поток капель направлен строго по оси от электрода к сварочной ванне. Дуга очень стабильная и ровная. Разбрызгивание очень небольшое. Валик сварного шва имеет гладкую поверхность. Энергия дуги передается в металл в форме конуса. Поэтому наплавляемый металл имеет поверхностное слияние. Глубина проплавления больше, чем при циклическом режиме сварки короткой дугой, но меньше, чем при крупнокапельном переносе.

                                            Режим струйного переноса металла характеризуется узким столбом дуги и заостренным концом плавящейся электродной проволоки. Расплавленный металл проволоки передается через дугу в виде мелких капель, до нескольких сотен в секунду. Диаметр капель равняется или меньше, чем диаметр электрода. Поток капель осенаправленный. Скорость плавления проволоки от 42 до 340 мм/с.

                                            Режим непрерывного вращающегося переноса металла (ротационный перенос). Ротационный перенос металла возникает при образовании длинного столба жидкости на конце оплавляющегося электрода. Вследствие очень большого тока (напряжение на дуге от 40 до 50 В при токе от 450 до 650 А) и большого вылета электрода температура образовывающейся капли настолько высока, что электрод плавится уже без действия дуги. Расстояние до токоведущего мундштука в этом случае составляет 25. 35 мм. По причине продольного магнитного поля столб жидкости вращается вокруг своей оси и конически расширяется. Капли металла переходят в радиальном направлении в основной материал и создают относительно плоское и широкое проплавление.

                                            В зависимости от свариваемого металла и его толщины в качестве защитных газов используют инертные, активные газы или их смеси. В силу физических особенностей стабильность дуги и ее технологические свойства выше при использовании постоянного тока обратной полярности. При использовании постоянного тока прямой полярности количество расплавляемого электродного металла увеличивается на 25. 30 %, но резко снижается стабильность дуги и повышаются потери металла на разбрызгивание. Применение переменного тока невозможно из-за нестабильного горения дуги.

                                            Инертные газы аргон и гелий и их смеси обязательно используются для сварки цветных металлов, а также широко применяются при сварке нержавеющих низколегированных сталей. Основное различие между аргоном и гелием — плотность, теплопроводность и характеристика дуги. Плотность аргона приблизительно в 1,4 раза больше плотности воздуха, а гелий в 0,14 раза легче воздуха. Для защиты сварочной ванны более эффективен тяжелый газ. Следовательно, гелиевая защита сварочной ванны для получения того же эффекта требует приблизительно в 2—3 раза большего расхода газа.

                                            Чистый аргон и гелиевая защита дают хорошие результаты при сварке цветных металлов. Тем не менее эти газы в чистом виде дают не вполне удовлетворительную характеристику при сварке черных металлов. Гелиевая дуга стремится к переходу в неуправляемый режим, сопровождаемый сильным разбрызгиванием. Аргоновая дуга имеет тенденцию к прожогу. Добавление к аргону 1. 5 % кислорода или 3. 10 % углекислого газа (вплоть до 25 %) дает заметное улучшение характеристики.

                                            Объем добавляемого кислорода или углекислого газа к инертному газу зависит от состояния поверхности (наличие окалины) основного металла, требуемого профиля сварного шва, положения в пространстве и химического состава свариваемого металла. Обычно добавления 3 % кислорода или 9 % углекислого газа вполне достаточно для проведения качественной сварки.

                                            Оцените статью
                                            Добавить комментарий

                                            Adblock detector