Схема управления двумя тиристорами

Тиристором называется четырёхслойный полупроводниковый прибор, состоящий из последовательно чередующихся областей p- и «-типов проводимости. До 1979 г. тиристоры называли тринисторами. С появлением ГОСТ 20859.1-79, а затем ГОСТ 20859.1-98 классификация изменилась следующим образом:

• триодные тиристоры или, сокращённо, тиристоры;

• тиристоры-диоды (тиристоры с встроенным обратным диодом);

• лавинные, асимметричные, запираемые тиристоры;

• симметричные триодные тиристоры или, по-другому, симисторы, триаки;

• фототиристоры, оптотиристоры, оптосимисторы.

Три вывода тиристора обозначают буквами: «А» (анод, Anode), «К» или «С» (катод, Cathode), «УЭ» или «G» (управляющий электрод или Gate — затвор).

Мощность нагрузки, подключаемой к аноду/катоду тиристора во много раз превышает мощность сигнала управления. Важной особенностью тиристора является то, что будучи однажды открыт, он находится в таком состоянии постоянно, вплоть до полного снятия питания. Следовательно, для управления тиристором можно использовать короткие импульсы.

В зависимости от слоя полупроводника, с которым внутри соединяется вывод УЭ, тиристоры бывают с управлением по катоду (Рис. 2.102, а, встречаются чаще) и с управлением по аноду (Рис. 2.102, б, встречаются реже).

Схема управления двумя тиристорами

Рис. 2.102. Условные графические обозначения тиристоров: а) с управлением по катоду; б) с управлением по аноду.

Среди множества электрических параметров тиристоров интерес, с точки зрения сопряжения с MK, представляют следующие:

• ток отпирания УЭ /уэ (десятки-сотни миллиампер);

• максимальное напряжение УЭ уэ(единицы-десятки вольт);

• Длительность импульса включения Твкл(микросекунды).

Типовые параметры тиристоров семейства КУ221: /уэ = 0.15 А; б эмлх = 7 В; Гвкл MIN = 2 МК с (в реальных схемах устанавливают 50 МК с…Ю мс); частота повторения импульсов на входе УЭ должна быть не более 30 кГц. Остальные параметры относятся к силовой части. Они зависят от мощности/напряжения в нагрузке и должны выбираться отдельно, без привязки к схемотехнике MK.

Для обеспечения долговременной надёжности работы тиристоров следует придерживаться свода простых правил:

• импульс УЭ должен иметь запас по току относительно минимально допустимого, иначе может произойти локальный пробой стуктуры слабым током помехи и выход тиристора из строя [2-187];

• рабочие напряжения и токи в силовой части надо выбирать с коэффициентом запаса 0.7…0.8 от максимально допустимых по даташиту;

• электрические параметры входа УЭ имеют значительный технологический разброс, поэтому расчёты элементов надо вести на худший случай. Тем не менее, некоторые экземпляры тиристоров могут включаться и при пониженных (по сравнению с даташитом) токах, напряжениях, чем часто пользуются радиолюбители в своих конструкциях;

• для повышения помехоустойчивости между катодом и УЭ рекомендуется ставить резистор сопротивлением 51… 1000 Ом. Другое решение — обеспечить низкий выходной импеданс генератора управляющих импульсов;

• следует создавать комфортный температурный режим для тиристора с применением радиаторов и теплопроводящих паст, например, КТП-8.

При коммутации нагрузки в цепи 220 В управляющие импульсы желательно синхронизировать с моментами перехода сетевого напряжения через нуль. Такой приём резко снижает уровень ВЧ-помех, «засоряющих» эфир. Для плавного изменения напряжения в нагрузке применяют фаз число-импульсное управление, при этом не имеет значение, как подключаются тиристоры к MK: без развязки от сети 220 В (Рис. 2.103, а…ж) или с гальванической изоляцией (Рис. 2.104, а…н).

Схема управления двумя тиристорами

а) импульсами с выхода MK периодически открывается транзистор K77, а через него и тиристор VS1. От частоты следования импульсов будет изменяться среднее напряжение в нагрузке RH. Необязательный конденсатор C7 уменьшает ВЧ-помехи в момент коммутации;

б) аналогично Рис. 2.103, а, но максимально упрощённо. Тем не менее, реально работает;

в) тиристор VS1 питается постоянным, а не пульсирующим напряжением, поэтому включается он положительным импульсом с выхода MK, а выключается полным снятием напряжения питания +9…+ 18 В;

г) аналогично Рис. 2.103, в, но без транзистора и с выключением тиристора VS1 нажатием кнопки SB1. Резистором R1 устанавливается ток управления не более 15 мА. Падение напряжения на тиристоре в открытом состоянии составляет 0.6…1.5 В. Контакты кнопки SB1 должны выдерживать максимальный ток, на который рассчитана нагрузка RH

д) микросхема DD1 имеет выход с открытым коллектором и служит ключом, открывающим тиристор VS1. Резистором R1 задаётся ток управления, но его может не хватить для конкретного тиристора из-за низкого напряжения питания +5 В (проверяется экспериментально);

Схема управления двумя тиристорами

Рис. 2.103. Схемы подключения тиристоров к МК без гальванической изоляции (окончание):

е) классическое включение шунтирующего резистора R3 между входом УЭ и катодом тиристора VSI. Напряжение питания +5 В для MK может быть получено от +9 В через стабилизатор;

ж) на вход УЭ тиристора VS1 через резистор R3 подаётся повышенное до+12 В напряжение, чтобы обеспечить гарантированное отпирание. В некоторых случаях, подбирая тип тиристора VS1, можно добиться его включения при пониженном напряжении +5 В. Необязательный конденсатор С/ несколько замедляет скорость нарастания управляющего тока (при этом увеличиваются потери мощности), но он защищает тиристор VS1 от ложных срабатываний.

Схема управления двумя тиристорами

Рис. 2.104. Схемы гальванической изоляции MK от тиристоров (начало):

а) гальваническая развязка через оптопару VU1. Тиристор VS1 подаёт напряжение в нагрузку Rн только во время одного полупериода сетевого напряжения 220 В. В другой полупериод нагрузка обесточена, поскольку закрыт диод VD2. Стабилитрон VD1 задаёт оптимальное напряжение на входе УЭ тиристора VS1. Резистор R2ограничивает ток управления;

б) аналогично Рис. 2.104, а, но с другой полярностью импульсов от MK, с дополнительным резистором R2, с конденсатором фильтра C1 и с другим стабилитроном VD1

Схема управления двумя тиристорами

в) на обоих выходах МК должны синхронно выставляться НИЗКИЕ и ВЫСОКИЕ уровни. Резисторы R1, &2 — токоограничивающие. Резистор R4 повышает помехоустойчивость;

г) гальваническая развязка на трансформаторе T1. Каждый из тиристоров VS1, VS2 открывается в свою полуволну сетевого напряжения импульсами с выхода МК длительностью 10 МК с и периодом 0.7…1 мс. Для питания транзистора VT1 применяется отдельный источник +5 B(2), чтобы помехи не нарушали работу MK. Трансформатор T1 наматывается на кольце из феррита 79HM K25xl5x5, в обмотке I — 40 витков, в обмотках II, III — по 80 витков провода ПЭВ-0.25;

д) MK формирует импульсы частотой 100 Гц и длительностью 12 МК с, которые постепенно за 3 с смещаются с конца полупериода сетевой синусоиды к ее началу. Как следствие, оптосимтор VU1 «малыми шажками» переходит в полностью открытое состояние, организуя плавный заряд ёмкости высоковольтного конденсатора C3. Дроссель L1 наматывается на кольце из феррита M2000HM1 K31xl8.5×7 и содержит две обмотки по 25 витков провода ПЭВ-1.0 в каждой;

е) коммутация нагрузки RH при помощи тиристора VS1 и изолированного оптореле VU1

Схема управления двумя тиристорами

ж) гальваническая развязка MK выполнена на оптопаре VU1. Трансформатор T1 служит не для изоляции (нагрузка RH и так связана с сетью 220 В), а для отпирания тиристора VS1 повышенным напряжением +9…+12 В при токе до 0.15 А. Экономически такое решение оправдано при многоканальной системе с большим числом тиристоров и одним трансформатором;

з) VU1 — сдвоенный опто тиристорный модуль фирмы «Элемент-Преобразователь». Линии МК запараллелены для повышения мощности. Замена VU1 — два оптотиристора ТО 125-10-6;

и) гальваническая развязка на оптосимисторе VU1. Тиристоры VS1, К£2соединены противонаправленно. Каждый из них открывается в «свой» полупериод сетевого напряжения;

к) тиристор оптопары VU1 замыкает диагональ диодного моста VD1, чтобы коммутировать нагрузку RH в оба полупериода сетевого напряжения. Ток через нагрузку не более 100 мА;

л) аналогично Рис. 2.104, к, но с другой полярностью импульсов и другими типами ЭРИ;

Схема управления двумя тиристорами

Рис. 2.104. Схемы гальванической изоляции МК от тиристоров (окончание):

м) стробоскоп с опторазвязкой. Тиристор VS1 через повышающий трансформатор T1 [2-196] периодически поджигаетлампу EL1. Светодиод HL1 индицирует вспышки стробоскопа;

н) маркировка на корпусе оптотиристоров VU1, Г772содержит буквы и символы вместо привычных арабских цифр. Мощность в нагрузке RH не более 100 Вт.

Читать также:  Как подобрать шунт для амперметра

Источник: Рюмик, С. М., 1000 и одна микроконтроллерная схема. Вып. 2 / С. М. Рюмик. — М.:ЛР Додэка-ХХ1, 2011. — 400 с.: ил. + CD. — (Серия «Программируемые системы»).

Схема управления двумя тиристорамиТиристор — электронный компонент, изготовленный на основе полупроводниковых материалов, может состоять из трёх или более p-n-переходов и имеет два устойчивых состояния: закрытое (низкая проводимость), открытое (высокая проводимость).

Это сухая формулировка, которая для тех, кто только начинает осваивать электротехнику, абсолютно ни о чём не говорит. Давайте разберём принцип работы этого электронного компонента для обычных людей, так сказать, для чайников, и где его можно применить. По сути, это электронный аналог выключателей, которыми вы каждый день пользуетес

Есть много типов этих элементов, обладающие различными характеристиками и имеющие различные области применения. Рассмотрим обычный однооперационный тиристор.

Способ обозначения на схемах показан на рисунке 1.

Электронный элемент имеет следующие выводы:

  • анод — положительный вывод;
  • катод — отрицательный вывод;
  • управляющий электрод G.

Принцип действия тиристора

Схема управления двумя тиристорамиОсновное применение этого типа элементов — это создание на их основе силовых тиристорных ключей для коммутации больших токов и их регулирования. Включение выполняется сигналом, переданным на управляющий электрод. При этом элемент является не полностью управляемым, и для его закрытия необходимо применение дополнительных мер, которые обеспечат падение величины напряжения до нуля.

Если говорить, как работает тиристор простым языком, то он, по аналогии с диодом, может проводить ток только в одном направлении, поэтому при его подключении нужно соблюдать правильную полярность. При подаче напряжения к аноду и катоду этот элемент будет оставаться закрытым до момента, когда на управляющий электрод будет подан соответствующий электрический сигнал. Теперь, независимо от наличия или отсутствия управляющего сигнала, он не изменит своего состояния и останется открытым.

Условия закрытия тиристора:

  1. Снять сигнал с управляющего электрода;
  2. Снизить до нуля напряжение на катоде и аноде.

Для сетей переменного тока выполнение этих условий не вызывает особых трудностей. Синусоидальное напряжение, изменяясь от одного амплитудного значения до другого, снижается до нулевой величины, и если в этот момент управляющего сигнала нет, то тиристор закроется.

В случае использования тиристоров в схемах постоянного тока для принудительной коммутации (закрытия тиристора) используют ряд способов, наиболее распространённым является использование конденсатора, который был предварительно заряжен. Цепь с конденсатором подключается к схеме управления тиристором. При подключении конденсатора в цепь произойдёт разряд на тиристор, ток разряда конденсатора будет направлен встречно прямому току тиристора, что приведёт к уменьшению тока в цепи до нулевого значения и тиристор закроется.

Можно подумать, что применение тиристоров неоправданно, не проще ли использовать обычный ключ? Огромным плюсом тиристора является то, что он позволяет коммутировать огромные токи в цепи анода-катода при помощи ничтожно малого управляющего сигнала, поданного в цепь управления. При этом не возникает искрения, что немаловажно для надёжности и безопасности всей схемы.

Схема включения

Схема управления двумя тиристорамиСхема управления может выглядеть по-разному, но в простейшем случае схема включения тиристорного ключа имеет вид, показанный на рисунке 2.

К аноду присоединена лампочка L, а к ней выключателем К2 подключается плюсовая клемма источника питания G. B. Катод соединяется с минусом питания.

После подачи питания выключателем К2 к аноду и катоду будет приложено напряжение батареи, но тиристор остаётся закрытым, лампочка не светится. Для того чтобы включить лампу, необходимо нажать на кнопку К1, сигнал через сопротивление R будет подан на управляющий электрод, тиристорный ключ изменит своё состояние на открытое, и лампочка загорится. Сопротивление ограничивает ток, подаваемый на управляющий электрод. Повторное нажатие на кнопку К1 никакого влияния на состояние схемы не оказывает.

Для закрытия электронного ключа нужно отключить схему от источника питания выключателем К2. Этот тип электронных компонентов закроется, и в случае снижения напряжения питания на аноде до определённой величины, которая зависит от его характеристик. Вот так можно описать, как работает тиристор для чайников.

Характеристики

К основным характеристикам можно отнести следующие:

  • Схема управления двумя тиристорамиМаксимально допустимый прямой ток — наибольшая возможная величина тока открытого элемента;
  • Максимально допустимый обратный ток — ток при максимальном обратном напряжении;
  • Прямое напряжение — падение величины напряжения при максимальном токе;
  • Обратное напряжение— наибольшая допустимая величина напряжения в закрытом состоянии;
  • Напряжение включения — наименьшее напряжение при котором сохраняется работоспособность электронного устройства;
  • Минимальный и максимальный ток управляющего электрода;
  • Максимально допустимая рассеиваемая мощность.

Рассматриваемые элементы, кроме электронных ключей, часто применяются в регуляторах мощности, которые позволяют изменять подводимую к нагрузке мощность за счёт изменения среднего и действующего значений переменного тока. Величина тока регулируется изменением момента подачи на тиристор открывающего сигнала (за счёт варьирования угла открывания). Углом открытия (регулирования) называется время от начала полупериода до момента открытия тиристора.

Типы данных электронных компонентов

Существует немало различных типов тиристоров, но наиболее распространены, помимо тех что мы рассмотрели выше, следующие:

  • динистор — элемент, коммутация которого происходит при достижении определённого значения величины напряжения, приложенного между анодом и катодом;
  • симистор;
  • оптотиристор, коммутация которого осуществляется световым сигналом.

Симисторы

Схема управления двумя тиристорамиХотелось бы более подробно остановиться на симисторах. Как говорилось ранее, тиристоры могут проводить ток только в одном направлении, поэтому при установке их в цепи переменного тока, такая схема регулирует один полупериод сетевого напряжения. Для регулирования обоих полупериодов необходимо установить встречно-параллельно ещё один тиристор либо применить специальные схемы с использованием мощных диодов или диодных мостов. Все это усложняет схему, делает её громоздкой и ненадёжной.

Вот для таких случаев и был изобретён симистор. Поговорим о нем и о принципе работы для чайников. Главное отличие симисторов от рассмотренных выше элементов заключается в способности пропускать ток в обоих направлениях. По сути, это два тиристора с общим управлением, подключённые встречно-параллельно (рисунок. 3 А).

Условное графическое обозначение этого электронного компонента показано на Рис. 3 В. Следует заметить, что называть силовые выводы анодом и катодом будет не корректно, так как ток может проводиться в любом направлении, поэтому их обозначают Т1 и Т2. Управляющий электрод обозначается G. Для того чтобы открыть симистор, необходимо подать управляющий сигнал на соответствующий вывод. Условия для перехода симистора из одного состояния в другое и обратно в сетях переменного тока не отличаются от способов управления, рассмотренных выше.

Применяется этот тип электронных компонентов в производственной сфере, бытовых устройствах и электроинструментах для плавного регулирования тока. Это управление электродвигателями, нагревательными элементами, зарядными устройствами.

В завершение хотелось бы сказать, что и тиристоры и симисторы, коммутируя значительные токи, обладают весьма скромными размерами, при этом на их корпусе выделяется значительная тепловая мощность. Проще говоря, они сильно греются, поэтому для защиты элементов от перегрева и теплового пробоя используют теплоотвод, который в простейшем случае представляет собой алюминиевый радиатор.

В настоящее время тиристоры находят широкое применение в различных устройствах автоматического контроля, сигнализации и управления. Тиристор представляет собой управляемый полупроводниковый диод, которому свойственны два устойчивых состояния: открытое, когда прямое сопротивление тиристора весьма мало и ток в его цепи зависит в основном от напряжения источника питания и сопротивления нагрузки, и закрытое, когда его прямое сопротивление велико и ток составляет единицы миллиампер.

На рис. 1 показана типовая вольтамперная характеристика тиристора, где участок О А соответствует закрытому состоянию тиристора, а участок БВ — открытому.

Схема управления двумя тиристорами

При отрицательных напряжениях тиристор ведет себя как обычный диод (участок ОД).

Если увеличивать прямое напряжение на закрытом тиристоре при токе управляющего электрода, равном нулю, то при достижении величины Uвкл тиристор откроется. Такое переключение тиростора называют переключением по аноду. Работа тиристора при этом аналогична работе неуправляемого полупроводникового четырехслойного диода — динистора.

Читать также:  Домофон своими руками в частном доме

Наличие управляющего электрода позволяет открывать тиристор при анодном напряжении, меньшем Uвкл. Для этого необходимо по цепи управляющий электрод — катод пропустить ток управления Iу. Вольтамперная характеристика тиристора для этого случая показана на рис. 1 пунктиром. Минимальный ток управления, необходимый для открывания тиристора, называется током спрямления Iспр. Ток спрямления сильно зависит от температуры. В справочниках он указывается при определенном анодном напряжении. Если за время действия тока управления анодный ток превысит значение тока выключения Iвыкл, то тиристор останется открытым и по окончании действия тока управления; если же этого не произойдет, то тиристор снова закроется.

При отрицательном напряжении на аноде тиристора подача напряжения на его управляющий электрод не допускается. Недопустимо также на управляющем электроде отрицательное (относительно катода) напряжение, при котором обратный ток управляющего электрода превышает несколько миллиампер.

Открытый тиристор можно перевести в закрытое состояние, только снизив его анодный ток до величины, меньшей Iвыкл. В устройствах постоянного тока для этой цели используются специальные гасящие цепочки, а в цепи переменного тока тиристор закрывается самостоятельно в момент перехода величины анодного тока через нуль.

Это является причиной наиболее широкого применения тиристоров в цепях переменного тока. Все рассматриваемые ниже схемы имеют отношение только к тиристорам, включенным в цепь переменного тока.

Для обеспечения надежной работы тиристора источник управляющего напряжения должен удовлетворять определенным требованиям. На рис. 2 показана эквивалентная схема источника управляющего напряжения, а на рис. 3 — график, с помощью которого можно определить требования к его нагрузочной прямой.

Схема управления двумя тиристорами

На графике линии А и Б ограничивают зону разброса входных вольтамперных характеристик тиристора, представляющих собой зависимости напряжения на управляющем электроде Uу от тока этого электрода Iу при разомкнутой анодной цепи. Прямая В определяет минимальное напряжение Uу, при котором открывается любой тиристор данного типа при минимальной температуре. Прямая Г определяет минимальный ток Iу, достаточный для открывания любого тиристора данного типа при минимальной температуре. Каждый конкретный тиристор открывается в определенной точке своей входной характеристики. Заштрихованная зона является геометрическим местом таких точек для всех тиристоров данного типа, удовлетворяющих техническим условиям. Прямые Д и Е определяют максимально допустимые значения напряжения Uу и тока Iу соответственно, а кривая К — максимально допустимое значение мощности, рассеиваемой на управляющем электроде. Нагрузочная прямая Л источника управляющего сигнала проведена через точки, определяющие напряжение холостого хода источника Еу.хх и его ток короткого замыкания Iу.кз= Eу.хх/Rвнутр, где Rвнутр— внутреннее сопротивление источника. Точка S пересечения нагрузочной прямой Л с входной характеристикой (кривая М) выбранного тиристора должна находиться в области, лежащей между заштрихованной зоной и линиями А, Д, К, Е и Б.

Эта область носит название предпочтительной области открывания. Горизонтальная прямая Н определяет наибольшее напряжение на управляющем переходе, при котором не открывается ни один тиристор данного типа при максимально допустимой температуре. Таким образом, эта величина, составляющая десятые доли вольта, определяет максимально допустимую амплитуду напряжения помехи в цепи управления тиристором.

После открывания тиристора цепь управления не влияет на его состояние, поэтому управление тиристором может осуществляться импульсами небольшой длительности (десятки или сотни микросекунд), что позволяет упростить схемы управления и снизить мощность, рассеиваемую на управляющем электроде. Длительность импульса, однако, должна быть достаточной для нарастания анодного тока до величины, превышающей ток выключения Iвыкл при различном характере нагрузки и режиме работы тиристора.

Сравнительная простота устройств управления при работе тиристоров в цепях переменного тока обусловила широкое применение этих приборов в качестве регулирующих элементов в устройствах стабилизации и регулирования напряжения. Среднее значение напряжения на нагрузке при этом регулируют изменением момента подачи (то есть фазы) управляющего сигнала относительно начала полупериода питающего напряжения. Частота следования управляющих импульсов в таких схемах должна быть синхронизирована с частотой сети.

Существует несколько методов управления тиристорами, из которых следует отметить амплитудный, фазовый и фазо-импульсный.

Амплитудный метод управления заключается в том, что на управляющий электрод тиристора подают положительное напряжение, изменяющееся по величине. Тиристор открывается в тот момент, когда это напряжение становится достаточным для протекания через управляющий переход тока спрямления. Изменяя напряжение на управляющем электроде, можно изменять момент открывания тиристора. Простейшая схема регулятора напряжения, построенная по этому принципу, приведена на рис. 4.

Схема управления двумя тиристорами

В качестве управляющего напряжения здесь используется часть анодного напряжения тиристора, то есть напряжения положительного полупериода сети. Резистором R2 изменяют момент открывания тиристора Д1 и, следовательно, среднее значение напряжения на нагрузке. При полностью введенном резисторе R2 напряжение на нагрузке минимально. Диод Д2 защищает управляющий переход тиристора от обратного напряжения. Следует обратить внимание на то, что цепь управления подключена не непосредственно к сети, а параллельно тиристору. Сделано это для того, чтобы открытый тиристор шунтировал цепь управления, не допуская бесполезного рассеивания мощности на ее элементах.

Основными недостатками рассматриваемого устройства являются сильная зависимость напряжения на нагрузке от температуры и необходимость индивидуального подбора резисторов для каждого экземпляра тиристора. Первое объясняется температурной зависимостью тока спрямления тиристоров, второе — большим разбросом их входных характеристик. Кроме того, устройство способно регулировать момент открывания тиристора только в течение первой половины положительного полупериода напряжения сети.

Управляющее устройство, схема которого приведена на рис. 5, позволяет расширить диапазон регулирования до 180°, а включение тиристора в диагональ выпрямительного моста — регулировать напряжение на нагрузке в течение обоих полупериодов напряжения сети.

Конденсатор С1 заряжается через резисторы R1 и R2 до напряжения, при котором через управляющий переход тиристора протекает ток, равный току спрямления. При этом тиристор открывается, пропуская ток через нагрузку. Благодаря наличию конденсатора напряжение на нагрузке меньше зависит от колебаний температуры, но тем не менее и этому устройству присущи те же недостатки.

При фазовом методе управления тиристорами с помощью фазовращательного моста изменяют фазу управляющего напряжения относительно напряжения на аноде тиристора. На рис. 6 приведена схема однополупериодного регулятора напряжения, в котором изменение напряжения на нагрузке осуществляется резистором R2, включенным в одно из плеч моста, с диагонали которого напряжение поступает на управляющий переход тиристора.

Схема управления двумя тиристорами

Напряжение на каждой половине обмотки III управления должно быть приблизительно 10 в. Остальные параметры трансформатора определяются напряжением и мощностью нагрузки. Основным недостатком фазового метода управления является малая крутизна управляющего напряжения, из-за чего стабильность момента открывания тиристора получается невысокой.

Фазо-импульсный метод управления тиристорами отличается от предыдущего тем, что с целью повышения точности и стабильности момента открывания тиристора на его управляющий электрод подают импульс напряжения с крутым фронтом. Этот метод получил в настоящее время наибольшее распространение. Схемы, реализующие этот метод, отличаются большим разнообразием.

На рис. 7 приведена схема одного из самых простых устройств, использующих фазо-импульсный метод управления тиристором.

При положительном напряжении на аноде тиристора Д3 конденсатор С1 заряжается через диод Д1 и переменный резистор R1. Когда напряжение на конденсаторе достигнет напряжения включения динистора Д2, он открывается и конденсатор разряжается через управляющий переход тиристора. Этот импульс разрядного тока открывает тиристор Д3 и через нагрузку начинает протекать ток. Изменяя резистором R1 ток заряда конденсатора, можно изменять момент открывания тиристора в пределах полупериода напряжения сети. Резистор R2 исключает самооткрывание тиристора Д3 за счет токов утечки при повышенной температуре. По техническим условиям при работе тиристоров в ждущем режиме установка этого резистора обязательна. Приведенная на рис. 7 схема не нашла широкого применения из-за большого разброса величины напряжения включения динисторов, доходящего до 200%, и значительной зависимости напряжения включения от температуры.

Читать также:  Оборудование для домашнего пива

Одной из разновидностей фазо-импульеного метода управления тиристорами является получившее в настоящее время наибольшее распространение так называемое вертикальное управление. Оно заключается в том, что на входе генератора импульсов производится сравнение (рис. 8) постоянного напряжения (1) и напряжения, изменяющегося по величине (2). В момент равенства этих напряжений генерируется импульс (3) управления тиристором. Переменное по величине напряжение может иметь синосоидальную, треугольную или пилообразную (как показано на рис. 8) форму.

Схема управления двумя тиристорами

Как видно из рисунка, изменение момента возникновения управляющего импульса, то есть сдвиг его фазы, может производиться тремя различными способами:

изменением скорости нарастания переменного напряжения (2а),

изменением его начального уровня (2б) и

изменением величины постоянного напряжения (1а).

На рис. 9 показана структурная схема устройства, реализующего вертикальный метод управления тиристорами.

Как и любое другое устройство фазо-импульсного управления, оно состоит из фазосдвигающего устройства ФСУ и генератора импульсов ГИ. Фазосдвигающее устройство, в свою очередь, содержит входное устройство ВУ, воспринимающее напряжение управления Uу, генератор переменного (по величине) напряжения ГПН и сравнивающее устройство СУ. В качестве названных элементов могут быть использованы самые различные устройства.

На рис. 10 приведена принципиальная схема устройства управления тиристором (Д5), включенным последовательно с мостовым выпрямителем (Д1 — Д4).

Схема управления двумя тиристорами

Устройство состоит из генератора пилообразного напряжения с транзисторным коммутатором (Т1), триггера Шмитта (Т2, Т3) и выходного ключевого усилителя (Т4). Под действием напряжения, снимаемого с синхронизирующей обмотки III трансформатора Тр1, транзистор Т1 закрыт. При этом конденсатор С1 заряжается через резисторы R3 и R4. Напряжение на конденсаторе возрастает по экспоненциальной кривой, начальный участок которой с некоторым приближением можно считать прямолинейным (2, см. рис. 8).

При этом транзистор Т2 закрыт, а Т3 открыт. Ток эмиттера транзистора Т3 создает на резисторе R6 падение напряжения, которое определяет уровень срабатывания триггера Шмитта (1 на рис. 8). Сумма напряжений на резисторе R6 и открытом транзисторе Т3 меньше, чем напряжение на стабилитроне Д10, поэтому транзистор Т4 закрыт. Когда напряжение на конденсаторе С1 достигает уровня срабатывания триггера Шмитта, транзистор Т2 открывается, а Т3 закрывается. Транзистор T4 при этом открывается и на резисторе R10 появляется импульс напряжения, открывающий тиристор Д5 (импульс 3 на рис. 8). В конце каждого полупериода напряжения сети транзистор T1 открывается током, протекающим через резистор R2. Конденсатор С1 при этом разряжается практически до нуля и устройство управления возвращается в исходное состояние. Тиристор закрывается в момент перехода амплитуды анодного тока через нуль. С началом следующего полупериода цикл работы устройства повторяется.

Изменяя сопротивление резистора R3, можно изменять ток заряда конденсатора С1, то есть скорость нарастания напряжения на нем, а значит, и момечт появления открывающего тиристор импульса. Заменив резистор R3 транзистором, можно автоматически регулировать напряжение на нагрузке. Таким образом, в этом устройстве использован первый из названных выше способов сдвига фазы управляющих импульсов.

Небольшое изменение схемы, показанное на рис. 11, позволяет получить регулирование по второму способу. В этом случае конденсатор С1 заряжается через постоянный резистор R4 и скорость нарастания пилообразного напряжения во всех случаях одинакова. Но при открывании транзистора T1 конденсатор разряжается не до нуля, как в предыдущем устройстве, а до напряжения управления Uу.
Следовательно, и заряд конденсатора в очередном цикле начнется с этого уровня. Изменяя напряжение Uу, регулируют момент открывания тиристора. Диод Д11 отключает источник напряжения управления от конденсатора во время его заряда.

Схема управления двумя тиристорами

Выходной каскад на транзисторе T4 обеспечивает необходимое усиление по току. Используя в качестве нагрузки импульсный трансформатор, можно одновременно управлять несколькими тиристорами.

В рассматриваемых устройствах управления к управляющему переходу тиристора напряжение приложено в течение отрезка времени от момента равенства постоянного и пилообразного напряжений до окончания полупериода напряжения сети, то есть до момента разряда конденсатора C1. Уменьшить длительность управляющего импульса можно включением дифференцирующей цепочки на входе усилителя тока, выполненного на транзисторе Т4 (см. рис. 10).

Одним из вариантов вертикального метода управления тиристорами является число-импульсный метод. Его особенность состоит в том, что на управляющий электрод тиристора подают не один импульс, а пачку коротких импульсов. Длительность пачки равна длительности управляющего импульса, показанного на рис. 8.

Частота следования импульсов в пачке определяется параметрами генератора импульсов. Число-импульсный метод управления обеспечивает надежное открывание тиристора при любом характере нагрузки и позволяет уменьшить мощность, рассеиваемую на управляющем переходе тиристора. Кроме этого, если на выходе устройства включен импульсный трансформатор, возможно уменьшить его размеры и упростить конструкцию.

На рис. 12 приведена схема управляющего устройства, использующего число-импульсный метод.

Схема управления двумя тиристорами

В качестве узла сравнения и генератора импульсов здесь применен балансный диодно-регенеративный компаратор, состоящий из схемы сравнения на диодах Д10, Д11 и собственно блокинг-генератора, собранного на транзисторе Т2. Диоды Д10, Д11 управляют работой цепи обратной связи блокинг-генератора.

Как и в предыдущих случаях, при закрытом транзисторе Т1 начинается заряд конденсатора С1 через резистор R3. Диод Д11 открыт напряжением Uу, а диод Д10 закрыт. Таким образом, цепь обмотки IIa положительной обратной связи блокинг-генератора разомкнута, а цепь обмотки IIб отрицательной обратной связи замкнута и транзистор Т2 закрыт. Когда напряжение на конденсаторе С1 достигнет напряжения Uу, диод Д11 закроется, а Д10 откроется. Цепь положительной обратной связи окажется замкнутой, и блокинг-генератор начнет вырабатывать импульсы, которые с обмотки I трансформатора Тр2 будут поступать на управляющий переход тиристора. Генерация импульсов будет продолжаться до конца полупериода напряжения сети, когда откроется транзистор T1 и конденсатор С1 разрядится. Диод Д10 при этом закроется, а Д11 откроется, блокинг-процесс прекратится, и устройство вернется в исходное состояние. Изменяя напряжение управления Uу, можно изменять момент начала генерации относительно начала полупериода и, следовательно, момент открывания тиристора. Таким образом, в данном случае используется третий способ сдвига фазы управляющих импульсов.

Применение балансной схемы узла сравнения обеспечивает температурную стабильность его работы. Кремниевые диоды Д10 и Д11 с малым обратным током позволяют получить высокое входное сопротивление сравнивающего узла (около 1 Мом). Поэтому он не оказывает практически никакого влияния на процесс заряда конденсатора С1. Чувствительность узла весьма высока и составляет несколько милливольт. Резисторы R6, R8, R9 и конденсатор С3 определяют температурную стабильность рабочей точки транзистора Т2. Резистор R7 служит для ограничения коллекторного тока этого транзистора и улучшения формы импульса блокинг-генератора. Диод Д13 ограничивает выброс напряжения на коллекторной обмотке III трансформатора Тр2, возникающий при закрывании транзистора. Импульсный трансформатор Тр2 можно выполнить на ферритовом кольце 1000НН типоразмера К15Х6Х4,5. Обмотки I и III содержат по 75, а обмотки II а и II б — по 50 витков провода ПЭВ-2 0,1.

Недостатком этого устройства управления является сравнительно низкая частота следования импульсов (примерно 2 кгц при длительности импульса 15 мксек). Увеличить частоту можно, например, уменьшив сопротивление резистора R4, через который разряжается конденсатор С2, но при этом несколько ухудшается температурная стабильность чувствительности сравнивающего узла.

Число-импульсный метод управления тиристорами можно использовать и в рассмотренных выше (рис. 10 и 11) устройствах, поскольку при определенном выборе номиналов элементов (С1, R4— R10, см. рис. 10) триггер Шмитта при напряжении на конденсаторе С1, превышающем уровень срабатывания триггера, генерирует не одиночный импульс, а последовательность импульсов. Их длительность и частота следования определяются параметрами и режимом триггера. Такое устройство получило название «мультивибратор с разрядным триггером».

В заключение следует отметить, что значительное схемное упрощение устройств управления тиристорами при сохранении высоких качественных показателей может быть достигнуто с помощью однопереходных транзисторов.

Оставить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *