Регулятор напряжения на двух транзисторах

Транзисторный регулятор сетевого напряжения

В последнее время в нашем быту все чаще применяются электронные устройства для плавной регулировки сетевого напряжения. С помощью таких приборов управляют яркостью свечения ламп, температурой электронагревательных приборов, частотой вращения электродвигателей. Подавляющее большинство регуляторов напряжения, собранных на тиристорах, обладают существенными недостатками, ограничивающими их возможности. Во-первых, они вносят достаточно заметные помехи в электрическую сеть, что нередко отрицательно сказывается на работе телевизоров, радиоприемников, магнитофонов. Во-вторых, их можно применять только для управления нагрузкой с активным сопротивлением – электролампой или нагревательным элементом, и нельзя использовать совместно с нагрузкой индуктивного характера – электродвигателем, трансформатором. Между тем все эти проблемы легко решить, собрав электронное устройство, в котором роль регулирующего элемента выполнял бы не тиристор, а мощный транзистор.

Транзисторный регулятор напряжения содержит минимум радиоэлементов, не вносит помех в электрическую сеть и работает на нагрузку как с активным, так и индуктивным сопротивлением. Его можно использовать для регулировки яркости свечения люстры или настольной лампы, температуры нагрева паяльника или электроплитки, скорости вращения электродвигателя вентилятора или дрели, напряжения на обмотке трансформатора. Устройство имеет следующие параметры: диапазон регулировки напряжения – от 0 до 218 В; максимальная мощность нагрузки при использовании в регулирующей цепи одного транзистора – не более 100 Вт.

Регулирующий элемент прибора – транзистор VT1 (см. принципиальную схему). Диодный блок VD1-VD4 в зависимости от фазы сетевого тока направляет его на коллектор или эмиттер VT1. Трансформатор Т1 понижает напряжение 220 В до 5-8 В, которое выпрямляется диодным блоком VD6- VD9 и сглаживается конденсатором С1. Переменный резистор R1 служит для регулировки величины управляющего напряжения, а резистор R2 ограничивает ток базы транзистора. Диод VD5 защищает VT1 от попадания на его базу напряжения отрицательной полярности. Устройство подсоединяется к сети вилкой ХР1. Розетка XS1 служит для подключения нагрузки.

Регулятор напряжения на двух транзисторахРегулятор действует следующим образом. После включения питания тумблером Q1 сетевое напряжение поступает одновременно на диоды VD1, VD2 и первичную обмотку трансформатора Т1. При этом выпрямитель, состоящий из диодного блока VD6- VD9, конденсатора С1 и переменного резистора R1, формирует управляющее напряжение, которое поступает на базу транзистора и открывает его. Если в момент включения регулятора в сети оказалось напряжение отрицательной полярности, ток нагрузки протекает по цепи VD2 – эмиттер-коллектор VT1-VD3. Если полярность сетевого напряжения положительная, ток протекает по цепи VD1 – коллектор-эмиттер VT1-VD4. Значение тока нагрузки зависит от величины управляющего напряжения на базе VT1. Вращая движок R1 и изменяя значение управляющего напряжения, управляют величиной тока коллектора VT1. Этот ток, а следовательно, и ток, протекающий в нагрузке, будет тем больше, чем выше уровень управляющего напряжения, и наоборот. При крайнем правом по схеме положении движка временного резистора транзистор окажется полностью открыт и "доза" электроэнергии, потребляемая нагрузкой, будет соответствовать номинальной величине. Если движок R1 переместить в крайнее левое положение, VT1 окажется запертым и ток через нагрузку не потечет. Управляя транзистором, мы фактически регулируем амплитуду переменного напряжения и тока, действующих в нагрузке. Транзистор при этом работает в непрерывном режиме, благодаря чему такой регулятор лишен недостатков, свойственных тиристорным устройствам.

Теперь перейдем к конструкции прибора. Диодные блоки, конденсатор, резистор R2 и диод VD6 устанавливаются на монтажной плате размером 55Х35 мм, выполненной из фольгированного гетинакса или текстолита толщиной 1-2 мм (см. рисунок). В устройстве можно использовать следующие детали. Транзистор – КТ812А(Б), KT824A(Б), КТ828А(Б), КТ834А(Б,В), КТ840А(Б), КТ847А или КТ856А. Диодные блоки: VD1- VD4-KЦ410B или КЦ412В. VD6- VD9 – КЦ405 или КЦ407 с любым буквенным индексом; диод VD5 – серии Д7, Д226 или Д237. Переменный резистор – типа СП, СПО, ППБ мощностью не менее 2 Вт, постоянный – ВС, МЛТ, ОМЛТ, С2-23. Оксидный конденсатор – К50-6, К50-16. Сетевой трансформатор – ТВ3-1-6 от ламповых радиоприемников и усилителей, ТС-25, ТС-27 – от телевизора "Юность" или любой другой маломощный с напряжением вторичной обмотки 5-8 В. Предохранитель рассчитан на максимальный ток 1 А. Тумблер – Т3-С или любой другой сетевой. ХР1 – стандартная сетевая вилка, XS1 – розетка.

Регулятор напряжения на двух транзисторах

Все элементы регулятора размещаются в пластмассовом корпусе с габаритами 150х100Х80 мм. На верхней панели корпуса устанавливаются тумблер и переменный резистор, снабженный декоративной ручкой. Розетка для подключения нагрузки и гнездо предохранителя крепятся на одной из боковых стенок корпуса. С той же стороны сделано отверстие для сетевого шнура. На дне корпуса установлены транзистор, трансформатор и монтажная плата. Транзистор необходимо снабдить радиатором с площадью рассеяния не менее 200 см 2 и толщиной 3-5 мм.

Читать также:  Самодельная зарядка для шуруповерта

Тема: как спаять схему регулируемого стабилизатора низковольтного напряжения.

Достаточно часто возникает необходимость для какого-нибудь электротехнического устройства установить регулятор постоянного напряжения, которым можно было бы настраивать любую нужную величину напряжения. Помимо этого этот регулятор должен быть достаточно стабильный, то есть выдавать на выходе определенное напряжение с незначительными отклонениями. Одной из наиболее простых схем, собранная всего на двух биполярных транзисторах, является приведенных выше вариант. Схема содержит минимум компонентов, она достаточно стабильна и способна выдавать на своем выходе величину постоянного напряжения от нуля до почти подаваемого на ее вход напряжения. Давайте рассмотрим общий принцип действия данной схемы стабилизированного регулятора постоянного напряжения.

Регулятор напряжения на двух транзисторах

На входе схемы стабилизатора стоит входной электролитический конденсатор C1, роль которого сводится к дополнительной фильтрации входного напряжения. Он имеет емкость где-то от 1000 до 2200 микрофарад. Рассчитан он должен на напряжения не менее входного (даже процентов на 25 больше, чем то, что подается на вход схемы).

Далее на схеме стабилизированного регулятора постоянного напряжения можно увидеть цепочку, состоящую из резистора R1 и стабилитрона VD. Эта цепочка представляет собой простейший параметрический стабилизатор постоянного напряжения . R1 ограничивает силу тока, что протекает через стабилитрон. Этот резистор может иметь величину от 510 Ом до 1 кОм. Стабилитрон должен быть подобран таким образом, чтобы его напряжение стабилизации было на 1,2 вольта больше, чем максимальное выходное напряжение нашей схемы регулируемого стабилизатора напряжения. Это связано с тем, что на каждом транзисторном переходе эмиттер-база будет оседать примерно по 0,6 вольта (поскольку транзисторов два, то и напряжение на них осядет уже 1,2 вольта). Токи, что будут протекать через стабилитрон, будут незначительные (около 5-15 миллиампер). Следовательно стабилитроны подойдут любого типа.

Параллельно стабилитрону VD стоит переменный резистор R2, которым и осуществляется регулировка нужного постоянного напряжения на выходе схемы. Этот резистор является делителем напряжения , что плавно делит напряжение, осевшее на стабилитроне. Величина этого переменного резистора может колебаться в пределах от 10 до 22 кОм. В одной крайнем положении ползунка резистора R2 напряжение на входе схемы регулятора напряжения будет нулевым, в противоположном крайнем положении оно будет соответствовать максимуму (что может выдать сама схема). Тип переменного резистора может быть любым. Лучше брать более компактный и удобный.

Напряжение, что снимается со среднего вывода переменного резистора (делителя напряжения) подается на два последовательно соединенных каскадов транзисторных усилителей тока. Эти транзисторные усилители тока включены по схеме с общем эмиттером (данную схему включения еще называют эмиттерным повторителем ). Суть такого подключения заключается в том, что на выходе транзисторного усилителя тока напряжение будет меньше где-то на 0,6 вольта, чем на его входе. То есть, усиления по напряжению не происходит. Зато оно происходит по току, и зависит от коэффициента усиления поставленных в схему транзисторов и количества каскадов таких усилителей.

В эту схему стабилизированного регулятора постоянного напряжения можно поставить обычные биполярные транзисторы с n-p-n проводимостью. В роле VT1 может выступать транзистор серии КТ315 или КТ3102. Второй транзистор VT2 может быть типа КТ815 (выходной ток до 1,5 ампера) или КТ817 (выходной ток до 3 ампера). Либо поставить любой аналогичный транзистор, рассчитанный на нужную силу тока на выходе схемы. Резисторы R3 и R4 являются нагрузкой для транзисторов, которые позволяют работать данным усилительный каскадам в нужном режиме. Величина этих резисторов 1 кОм.

Ну, и еще один электролитический конденсатор можно заменить на самом выходе схемы регулятора постоянного напряжения. Он также увеличивает фильтрацию выходного напряжения, что делает форму тока более ровной, постоянной. Его величина также может лежать в пределах от 1000 до 2200 мкф.

Регулятор напряжения на двух транзисторахПриведенная схема уже неоднократно проверена. После пайки она сразу же начинает нормально работать. Как уже сказал выше, схема достаточно проста и имеет малое количество элементов. Если выходные токи будут больше 1 ампера, то к выходному транзистору VT2 нужно будет добавить радиатор, который будет рассеивать выделяемое тепло, образуемое на транзисторе. Это предотвратить чрезмерный перегрев выходного усилительного каскада, что в противном случае может попросту вывести транзистор из строя.

Регулятор напряжения на двух транзисторахВ электрических схемах для изменения уровня выходного сигнала используется регулятор напряжения. Основное его назначение — изменять подаваемую на нагрузку мощность. C помощью устройства управляют оборотами электродвигателей, уровнем освещённости, громкостью звука, нагревом приборов. В радиомагазинах можно приобрести готовое изделие, но несложно изготовить регулятор напряжения своими руками.

Читать также:  Коптильня из духовки своими руками

Описание устройства

Регулятором напряжения называется электронный прибор, служащий для повышения или понижения уровня выходного сигнала, в зависимости от величины разности потенциалов на его входе. То есть это устройство, с помощью которого можно управлять значением мощности, подводимой к нагрузке. При этом регулировать подаваемый уровень энергии можно как на реактивной, так и активной нагрузке.

Регулятор напряжения на двух транзисторахСамым простым устройством, с помощью которого можно изменять уровень сигнала, считается реостат. Он представляет собой резистор, имеющий два вывода, один из которых подвижный. При перемещении ползункового вывода реостата изменяется сопротивление. Для этого он подключается параллельно нагрузке. Фактически это делитель напряжения, позволяющий регулировать величину разности потенциалов на нагрузке в пределах от нуля до значения, выдаваемого источником энергии.

Использование реостата ограничено мощностью, которую можно через него пропустить. Так как при больших значениях тока или напряжения он начинает сильно нагреваться и в итоге перегорает, поэтому на практике применение реостата ограничено. Его используют в параметрических стабилизаторах, элементах электрического фильтра, усилителях звука и регуляторах освещённости небольшой мощности.

Разновидности приборов

По виду выходного сигнала регуляторы разделяют на стабилизированные и нестабилизированные. Также они могут быть аналоговыми и цифровыми (интегральными). Первые строятся на основе тиристоров или операционных усилителей. Их управление осуществляется путём изменения параметров RC цепочки обратной связи. Совместно с ними для повышения мощности применяются биполярные или полевые транзисторы. Работа же интегральных устройств связана с использованием широтно-импульсной модуляции (ШИМ), поэтому в цифровой схемотехнике используются микроконтроллеры и силовые транзисторы, работающие в ключевом режиме.

При изготовлении самодельного регулятора напряжения могут быть использованы следующие элементы:

  • Регулятор напряжения на двух транзисторахрезисторы;
  • тиристоры или транзисторы;
  • цифровые или аналоговые интегральные микросхемы.

Первые два типа имеют несложные схемы и довольно просты к самостоятельной сборке. Их можно изготавливать без использования печатной платы с помощью навесного монтажа, в то время как импульсные регуляторы на основе микроконтроллеров требуют более обширных знаний в радиоэлектронике и программировании.

Характеристика регулятора

По своему виду приспособления могут изготавливаться в портативном или стационарном исполнении. Устанавливаются они в любом положении: вертикальном, потолочном, горизонтальном.

Устройства могут крепиться с использованием дин-рейки или встраиваться в различные блоки и приборы. Конструктивно регуляторы возможно изготовить как корпусными, так и без помещения в корпус.

К основным характеристикам устройств относят следующие параметры:

  1. Плавность регулировки. Обозначает минимальный шаг, с которым происходит изменение величины разности потенциалов на выходе. Чем он плавнее, тем точнее можно выставить значение напряжения на выходе.
  2. Регулятор напряжения на двух транзисторахРабочая мощность. Характеризуется значением силы тока, которое может пропускать через себя прибор продолжительное время без повреждения своих электронных связей.
  3. Максимальная мощность. Пиковая величина, которую кратковременно выдерживает устройство с сохранением своей работоспособности.
  4. Диапазон входного напряжения. Это значения входного сигнала, с которым устройство может работать.
  5. Диапазон изменяемого сигнала на выходе устройства. Обозначает значения разности потенциалов, которое может обеспечить устройство на выходе.
  6. Тип регулируемого сигнала. На вход устройства может подаваться как переменное, так и постоянное напряжение.
  7. Условия эксплуатации. Обозначает условия, при которых характеристики регулятора не изменяются.
  8. Способ управления. Выставление выходного уровня сигнала может осуществляться пользователем вручную или без его вмешательства.

Особенности изготовления

Изготовить регулирующее приспособление можно несколькими способами. Самый лёгкий -приобрести набор, содержащий уже готовую печатную плату и радиоэлементы, необходимые для сборки своими руками. Кроме них, набор содержит электрическую и принципиальную схему с описанием последовательности действий. Такие наборы называются KIT и предназначены для самых неопытных радиолюбителей.

Другой путь подразумевает самостоятельное приобретение радиокомпонентов и изготовление в случае необходимости печатной платы. Используя второй способ, можно будет сэкономить, но он занимает больше времени.

Существует множество схем разного уровня сложности для самостоятельного изготовления. Но чтобы сделать регулятор напряжения, кроме схемы, понадобится подготовить следующие инструменты, приборы и материалы:

  • Регулятор напряжения на двух транзисторахпаяльник;
  • мультиметр;
  • припой;
  • пинцет;
  • кусачки;
  • флюс;
  • технический спирт;
  • соединительные медные провода.

Если планируется собирать устройство, состоящее из 6 и более элементов, то целесообразно будет смастерить печатную плату. Для этого необходимо иметь фольгированный текстолит, хлорное железо и лазерный принтер.

Техника изготовления печатной платы в домашних условиях называется лазерно-утюжной (ЛУТ). Её суть заключается в распечатывании печатной платы на глянцевом листе бумаги, и переносом изображения на текстолит с помощью проглаживания утюгом. Затем плату погружают в раствор хлорного железа. В нём открытые участки меди растворяются, а закрытые с переведённым изображением формируют необходимые соединения.

При самостоятельном изготовлении прибора важно соблюдать осторожность и помнить про электробезопасность, особенно при работе с сетью переменного тока 220 В. Обычно правильно собранный регулятор из исправных радиодеталей не нуждается в настройке и сразу начинает работать.

Читать также:  Пяльцы для вышивания своими руками из дерева

Простые схемы

Для управления величиной выходного напряжения для слабо мощных устройств можно собрать простой регулятор напряжения на 2 деталях. Понадобится лишь транзистор и переменный резистор. Работа схемы проста: с помощью переменного резистора происходит индуцирование (отпирание транзистора).

Регулятор напряжения на двух транзисторахЕсли управляющий вывод резистора находится в нижнем положении, то напряжение на выходе схемы равно нулю. А если вывод перемещается в верхнее положение, то транзистор максимально становится открытым, а уровень выходного сигнала будет равен напряжению источника питания за вычетом падения разности потенциалов на транзисторе.

При изменении сопротивления регулируется величина напряжения на выходе. В зависимости от типа транзистора изменяется и схема включения. Чем номинал переменного резистора будет меньше, тем регулировка будет плавней. Недостатком схемы является чрезмерный нагрев транзистора, поэтому чем больше будет разница между Uвх и Uвых, тем он будет сильнее нагреваться.

Такую схему удобно применять для регулировки вращения компьютерных вентиляторов или других слабых двигателей, а также светодиодов.

Симисторный вид

Для регулировки переменного напряжения используются симисторные регуляторы, с помощью которых можно управлять мощностью паяльника или лампочки. Собрав схему на недорогом и доступном симисторе BT136, можно изменять мощность нагрузки в пределах 100 ватт.

Для сборки схемы понадобится:

НаименованиеНоминалАналог
Резистор R1470 кОм
Резистор R210 кОм
Конденсатор С10,1 мкФ х. 400 В
Диод D11N40071SR35–1000A
Светодиод D2BL-B2134GBL-B4541Q
Динистор DN1DB3HT-32
Симистор DN2BT136КУ 208

Регулятор напряжения на двух транзисторахПринцип работы регулятора заключается в следующем: через цепочку, состоящую из динистора DN1, конденсатора C1 и диода D1, ток поступает на симистор DN2, что приводит к его открытию. Момент открытия зависит от ёмкости C1, которая заряжается через резисторы R1 и R2. Соответственно, изменением сопротивления R1 управляется скорость заряда C1.

Несмотря на простоту, такая схема отлично справляется с регулировкой вольтажа нагревательных устройств, использующих вольфрамовую нить. Но так как такая схема не имеет обратной связи, использовать её для управления оборотами коллекторного электродвигателя нельзя.

Реле напряжения

Для автолюбителей важным элементом является устройство, поддерживающее напряжение бортовой сети в установленных пределах при изменении различных факторов, например, оборотов генератора, включении или выключении фар. Использующиеся для этого приборы работают по одинаковому принципу – стабилизация напряжения путём изменения тока возбуждения. Иными словами, если уровень сигнала на входе изменяется, то устройство уменьшает или увеличивает ток возбуждения.

Собранная схема своими руками реле-регулятора напряжения должна:

  • работать в широком диапазоне температур;
  • выдерживать скачки напряжения;
  • иметь возможность отключения во время запуска мотора;
  • обладать малым падением разности потенциалов.

Регулятор напряжения на двух транзисторах

Упрощённо принцип работы можно описать в следующем виде: при величине напряжения, превышающей установленное значение, ротор отключается, а при её нормализации запускается вновь. Основным элементом схемы является ШИМ стабилизатор LM 2576 ADJ.

Микросхема TC4420EPA предназначена для моментального переключения транзистора. С помощью резистора R3, конденсатора C1 и стабилитронов VD1, VD2 осуществляется защита микросхемы и полевого транзистора. Резисторы R1 и R2 задают опорное напряжение для стабилизатора. DD1 управляет работой полевого транзистора и ротора. Диод D2 используется для ограничения управляющего напряжения. Индуктивность L1 обеспечивает плавность разрядки ротора через диоды D4 и D5 при размыкании цепи.

Управляемый блок питания

Конструируя различные схемы, радиолюбители часто собирают источники напряжений. Спаяв регулятор постоянного напряжения своими руками, его можно будет использовать как управляемый блок питания в диапазоне от 0 до 12В.

Собираемый источник напряжения состоит из 2 частей: блока питания и параметрического регулятора напряжения. Первая часть изготавливается по классической схеме: понижающий трансформатор — выпрямительный блок. Типом используемого трансформатора, выпрямительных диодов и транзистора определяется мощность устройства. Переменное напряжение сети понижается в трансформаторе до 11 вольт, после чего попадает на диодный мост VD1, где становится постоянным. Конденсатор C1 используется как сглаживающий фильтр. Сигнал поступает на параметрический стабилизатор, состоящий из резистора R1 и стабилитрона VD2.

Регулятор напряжения на двух транзисторах

Параллельно стабилитрону подключён резистор R2, которым и изменяется уровень выходного напряжения. Транзисторы включены по упрощённой схеме эмиттерного повторителя, и при появлении на их переходах напряжения начинают работать в режиме усиления тока. То есть сигнал, снятый с R2, поступает на выход прибора через транзисторы, которые снижают его значение на величину своего насыщения. Таким образом, чем больше подаётся на них напряжение, тем сильнее они открываются и больше мощности поступает на выход.

Этот регулируемый блок питания может работать с нагрузкой до трёх ампер, то есть обеспечивать мощность до 30 ватт. Если есть опыт, то схема паяется навесным монтажом с использованием проводов любого сечения.

Оцените статью
Добавить комментарий

Adblock detector