Расчет тока вторичной обмотки трансформатора

Расчет тока вторичной обмотки трансформатора

Каждый электроприбор характерен номинальной электрической мощностью. Она обеспечивается источником питания. Он может располагаться либо внутри электроприбора, либо снаружи как внешнее устройство. Наглядный пример — ноутбук, телефон и многие другие приборы. В них содержится батарея, от которой питается устройство в автономном режиме. Но ее ресурс ограничен, и когда он исчерпывается, прибор подключается через адаптер к электросети 220 В.

Некоторые батареи обеспечивают напряжение всего лишь в 3–5 вольт. Поэтому адаптер служит для того, чтобы напряжение уменьшилось и стало равным батарейным параметрам. Основную функцию в изменении величины напряжения выполняют трансформаторы. Эта статья будет полезна тем читателям, у которых появится желание своими руками изготовить источник питания с трансформатором для тех или иных целей.

Немного теории

Напомним вкратце о том, как трансформатор устроен и что в нем происходит. Довольно давно, если судить по меркам человеческой жизни, было открыто явление электромагнитной индукции. Оно основано на принципиальном отличии электрических свойств прямого проводника от витка, если по ним пропускать один и тот же переменный ток. Так появился параметр индуктивности. С каждым новым витком индуктивность увеличивается. Дополнительное ее увеличение достигается заполнением внутреннего пространства витков материалом с магнитными свойствами (сердечником).

Однако влияние сердечника на силу тока ограничено. Как только он полностью намагничивается, эффект от его использования исчезает.

  • Граничное состояние сердечника, соответствующее полному его намагничиванию, называется насыщением.

Витки, расположенные поверх сердечника, называются обмоткой. Если на нем расположены две одинаковые обмотки, но переменное напряжение подается только на одну из них (первичную), на выводах другой обмотки (вторичной) будет напряжение по частоте и величине такое же, как и на первой обмотке. В этом проявляется трансформация электроэнергии, а само устройство называется трансформатором. Если между обмотками существует электрический контакт, устройство называется автотрансформатором.

  • Основа свойств трансформатора — это его сердечник (магнитопровод). Поэтому расчет трансформатора всегда выполняется в связи с материалом и формой магнитопровода.

Выбор материала определяют вихревые токи и потери, связанные с ними. Они увеличиваются с частотой напряжения на выводах первичной обмотки. На низких частотах (50–100 Гц) применяются пластины из трансформаторной стали. На более высоких частотах (единицы килогерц) — пластины из специального сплава, например, пермаллоя. Десятки и сотни килогерц — это область применения ферритовых сердечников. Виды (форма и размеры, особенно сечение по витку) магнитопровода определяют величину мощности, которую можно получить во вторичной обмотке.

Расчет тока вторичной обмотки трансформатора

Расчет тока вторичной обмотки трансформатораРасчет тока вторичной обмотки трансформатора

Выбор магнитопровода

Геометрические пропорции промышленно выпускаемых сердечников стандартны. Поэтому их выбирают по размерам сечения внутри витка. Еще один параметр, который влияет на выбор магнитопровода — это индуктивность рассеяния. Она меньше у броневых и тороидальных конструкций. Что-либо вычислять не стоит — в многочисленных справочниках приводятся таблицы, а в интернете на тематических сайтах их аналоги.

Например, необходимо присоединить к сети нагрузку мощностью 100 Вт 12 В. По базовой таблице, показанной далее, выбирается типоразмер магнитопровода. Но учитываем то, что мощность ВТ меньше, чем ВА плюс неполная нагрузка для надежности. Поэтому используем коэффициент 1,43. Искомая мощность и типоразмер получатся как произведение, т.е. 143 ВА. По таблице выбираем ближайшее большее значение габаритной мощности и магнитопровод:

Расчет тока вторичной обмотки трансформатора

Пример расчета

Выбираем 150 ВА и ШЛ25х32. В таблице также приведено рекомендованное число витков на 1 вольт — W0: 3,9. Следовательно, число витков W1 первичной обмотки будет равно произведению напряжения сети на W0:

Раз число витков на 1 вольт известно, легко рассчитать и вторичную обмотку. В рассматриваемом случае три витка мало, а четыре много. Чтобы не ошибиться, наматываем три витка и оставляем запас провода для добавления после испытания трансформатора под нагрузкой. Для провода сетевой обмотки диаметр рассчитываем, используя силу тока. Ее определяем на основе мощности в первичной обмотке и сетевого напряжения. В сетевой обмотке расчетная сила тока составит:

Во вторичной обмотке сила тока составит:

Затем по таблице выбираем диаметр провода при плотности тока 2,5 А/мм кв:

Расчет тока вторичной обмотки трансформатораРасчет тока вторичной обмотки трансформатора

Для первичной обмотки диаметр провода получается 0,59 мм, для вторичной — 2,0 мм. После этого надо выяснить, помещаются ли обмотки в окна магнитопровода. Это несложно определить на основе числа витков и диаметров проводов с учетом толщины каркасов катушек и слоев дополнительной изоляции. Рекомендуется сделать эскиз для наглядного расчета.

Если вторичных обмоток несколько, должны быть известны мощности для каждой из них. Они суммируются для получения параметров первичной обмотки. Затем расчет выполняется аналогично рассмотренному выше примеру. Но определение токов делается по мощности каждой вторичной обмотки.

Расчетные данные в виде таблиц приведены в справочниках для всех типов сердечников, но при определенных частотах напряжений первичной обмотки:

Расчет тока вторичной обмотки трансформатора

Для рассматриваемой нагрузки 100 Вт выбираем ПЛ20х40-50

Если требуемые параметры не совпадают с табличными значениями, придется использовать формулы:

Расчет тока вторичной обмотки трансформатора

Расчет тока вторичной обмотки трансформатора

S0 – площадь окна в магнитопроводе,

Sc – сечение материала магнитопровода по витку,

Рг – габаритная мощность,

kф – коэффициент формы напряжения на первичной обмотке,

f – частота напряжения на первичной обмотке,

j – плотность тока в проводе обмотки,

Bm – индукция насыщения магнитопровода,

k0 – коэффициент заполнения окна магнитопровода,

kс – коэффициент заполнения стали.

Упрощенные формулы справедливы только для тех случаев, которые эти упрощения определяют. Поэтому они не могут охватить все возможные ситуации и не будут обеспечивать приемлемую точность в большинстве из них.

Занимаясь расчетами мощного источника питания, я столкнулся с проблемой — мне понадобился трансформатор тока, который бы точно измерял ток. Литературы по этой теме не много. А в Интернете только просьбы — где найти такой расчет.
Прочитал статью "Семисторный регулятор с защитой от перегузки" в журнале "Радио" №8 за 2003 г. автора Лаврова Б. Зная, что ошибки могут присутствовать, я детально разобрался с данной темой. Ошибки, конечно, присутствовали: нет согласующего резистора Rc (см. рис. 2) для согласования на выходе вторичной обмотки трансформатора (он и не был рассчитан) по току. Вторичная цепь трансформатора тока рассчитана как обычно у трансформатора напряжения (задался нужным напряжением на вторичной обмотке и произвел расчет).

Итак, прежде всего немного теории.
Трансформатор тока работает как источник тока с заданным первичным током, представляющим ток защищаемого участка цепи. Величина этого тока практически не зависит от нагрузки вторичной цепи трансформатора тока, поскольку его сопротивление с нагрузкой, приведенное к числу витков первичной обмотки, ничтожно мало по сравнению с сопротивлениями элементов электрической схемы. Это обстоятельство делает работу трансформатора тока отличной от работы силовых трансформаторов и трансформаторов напряжения.
На рис. 1 показана маркировка концов первичной и вторичной обмоток трансформатора тока, навитых на магнитопровод в одном и том же направлении (I1 — ток первичной обмотки, I2 -ток вторичной). Ток I2 пренебрегая малым током намагничивания, всегда направлен так, чтобы размагничивать магнитопровод.
Стрелками показано направление токов. Поэтому если принять верхний конец первичной обмотки за начало "Н", то началом вторичной обмотки "н" также является ее верхний конец. Принятому правилу маркировки соответствует такое же направление токов, учитывая знак. И самое главное правило: условие равенства магнитных потоков.
На рис.2 показана схема трансформатора тока.
Алгебраическая сумма произведений I1·W1 — I2·W2 = 0 (пренебрегая малым током намагничивания), где W1 — количество витков первичной обмотки трансформатора тока, W 2 — количество витков вторички трансформатора.
Пример. Пусть вы, задавшись током первичной обмотки в 16А, произвели расчет и получилось 5 витков. Вы задаетесь током вторичной обмотки, например 0,1А, и согласно вышеупомянутой формулы I1·W1 = I2·W2 рассчитаем в ней количество витков:
W2 = I1·W1 / I2 = 16·5/0,1 = 800.
Далее произведя вычисления L2 — индуктивности вторичной обмотки, ее реактивного сопротивления XL1 , мы вычислим U2 и потом сопротивление нагрузки Rc. Но это чуть позже. То есть вы видите, что задавшись током во вторичной обмотке трансформатора I2 , вы только тогда вычисляете количество витков. Ток I2 трансформатора тока можно задать любой — отсюда будет вычисляться Rc. И еще — I2 должен быть больше тех нагрузок, которые вы будете подключать. Трансформатор тока должен работать только на согласованную по току нагрузку (речь идет о Rc).
Если пользователю требуется трансформатор тока для применения в схемах защиты, то такими тонкостями как направление намоток, как точность резистивной нагрузки Rc можно пренебречь, но это уже будет не трансформатор тока, а датчик тока с большой погрешностью. И эту погрешность можно будет устранить, только создав нагрузку на устройстве (я и имею в виду источник питания, где пользователь собирается ставить защиту, применяя трансформатор тока), и схемой защиты установить порог ее срабатывания по току. Если пользователю требуется схема измерения тока, то как раз эти тонкости должны быть обязательно соблюдены.
На рис. 2 (точки — начало намоток) показан резистор Rc, который является неотъемлимой частью трансформатора тока для согласования токов первичной и вторичной обмоток. То есть Rc задает ток во вторичной обмотке. В качестве Rc не обязательно применять резистор, можно поставить амперметр, реле, но при этом должно соблюдаться обязательное условие — внутреннее сопротивление нагрузки должно быть равным рассчитанному Rc.
Если нагрузка не согласованная по току — это будет генератор повышенного напряжения. Поясню, почему так.
Как уже было ранее сказано, ток I2 трансформатора направлен в противоположную сторону от направления тока первичной обмотки. И вторичная обмотка трансформатора работает как размагничивающая. Если нагрузка во вторичной обмотке трансформатора не согласованная по току или будет отсутствовать, первичная обмотка будет работать как намагничивающая. Индукция резко возрастает, вызывая сильный нагрев магнитопровода за счет повышенных потерь в стали. Индуктируемая в обмотке ЭДС будет определяться скоростью изменениями потока во времени, имеющей наибольшее значение при прохождении трапецеидального (за счет насыщения магнитопровода) потока через нулевые значения. Индуктивность обмоток резко уменьшается, что вызывает еще больший нагрев трансформатора и в конечном итоге — выход его из строя.

Читать также:  Как переделать акб шуруповерта на литий

Типы магнитных сердечников приведены на рис.3.
Витой или ленточный магнитопровод — одно и то же понятие, также как и выражение кольцевой или тороидальный магнитопровод: в литературе встречаются и то, и другое.
Это может быть ферритовый сердечник или Ш-образное трансформаторное железо, или ленточные сердечники.
Ферритовые сердечники обычно применяется при повышенных частотах — 400 Гц и выше из-за того, что они работают в слабых и средних магнитных полях (Вm = 0,3 Тл максимум). И так как у ферритов, как правило, высокое значение магнитной проницаемости µ и узкая петля гистерезиса, то они быстро заходят в область насыщения. Выходное напряжение, при f = 50 Гц, на вторичной обмотке составляет единицы вольт либо меньше. На ферритовых сердечниках наносится, как правило, маркировка об их магнитных свойствах (пример М2000 означает магнитную проницаемость сердечника µ, равную 2000 единиц).
На ленточных магнитопроводах или из Ш-образных пластин такой маркировки нет, и поэтому приходится определять их магнитные свойства экспериментально, и они работают в средних и сильных магнитных полях (в зависимости от применяемой марки электротехнической стали — 1,5. 2 Тл и более) и применяются на частотах 50 Гц. 400 Гц.
Кольцевые или тороидальные витые (ленточные) магнитопроводы работают и на частоте 5 кГц (а из пермаллоя даже до 25 кГц). При расчете S — площади сечения ленточного тороидального магнитопровода, рекомендуется результат умножить на коэффициент к = 0,7. 0,75 для большей точности. Это объясняется конструктивной особенностью ленточных магнитопроводов.
Что такое ленточный разрезной магнитопровод (рис. 3)?
Стальную лента, толщиной 0,08 мм или толще, наматывают на оправку, а затем отжигают на воздухе при температуре 400. 500 °С для улучшения их магнитных свойств. Потом эти формы разрезаются, шлифуются края, и собирается магнитопровод. Кольцевые (неразрезные) витые магнитопроводы из тонких ленточных материалов (пермаллоев толщиной 0,01.. .0,05 мм) во время навивки покрывают электроизолирующим материалом, а затем отжигают в вакууме при 1000. 1100 °С.
Для определения магнитных свойств таких магнитопроводов надо намотать 20. 30 витков провода (чем больше витков, тем точнее будет значение магнитной проницаемости сердечника) на сердечник магнитопровода и измерить L-индуктивность этой намотки (мкГн). Вычислить S — площадь сечения сердечника трансформатора (мм2), lm-среднюю длину магнитной силовой линии (мм).
И по формуле рассчитать µ — относительную магнитную проницаемость сердечника :
(1) µ = (800·L·lm) / (N²·S) — для ленточного и Ш-образного сердечника.
(2) µ = 2500·L(D + d) / W²·C(D — d) — для кольцевого (тороидильного) сердечника.
При расчете трансформатора на более высокие токи применяется провод большого диаметра в первичной обмотке, и здесь вам понадобится витой стержневой магнитопровод (П-образный), витой кольцевой сердечник или ферритовый тороид.
Если кто держал в руках трансформатор тока промышленного изготовления на большие токи, то видел, что первичной обмотки, навитой на магнитопровод, нет, а имеется широкая алюминиевая шина, проходящая сквозь магнитопровод.
Я напомнил об этом затем, что расчет трансформатора тока можно производить, либо задавшись Вm — магнитной индукцией в сердечнике, при этом первичная обмотка будет состоять из нескольких витков и придется мучиться, наматывая эти витки на сердечник трансформатора. Либо надо рассчитать магнитную индукцию Вm поля, создаваемую проводником с током, в сердечнике.

Читать также:  Трехфазный асинхронный двигатель в однофазной сети

А теперь приступим к расчету трансформатора тока, применяя законы.
Вы задаетесь током первичной обмотки трансформатора тока, то есть тем током, который вы будете контролировать в цепи.
Пусть будет I1 = 20А, а частота, на которой будет работать трансформатор тока, f = 50 Гц.
Возьмем ленточный кольцевой сердечник OЛ25/40-10 или (40x25x10 мм), схематично представленный на рис.4.
Размеры: D = 40мм, d = 25мм, С = 10мм.
Для проверки относительной магнитной проницаемости я намотал 20 витков провода на кольцевой сердечник и измерил прибором Е7-11 индуктивность обмотки.Прибор показал индуктивность 262 мкГн. Далее по формуле (2) рассчитал µ.
В формуле (2) D, d, С — размеры кольцевого сердечника в мм; L — индуктивность в мкГн; W — количество витков (рис.4).
µ = (2500·262(40 + 25))/(20²·10(40 — 25)) = 710.
Рассчитаем Dср = (D + d)/2 — средний диаметр кольца:
Dср = (40 + 25)/2 = 32,5 мм = 32,5·10ˉ³ м.
Средняя длина магнитной силовой линии Im = π·Dср:
Im = 3,14·32,5 = 102,1мм = 102,1·10ˉ³ м.
Площадь сечения сердечника S = [(D — d)/2]·С:
S = [(40 — 25)/2]·10 = 75 мм² = 75·10 -6 м²
Поправка с учетом вышесказанного S = 75·0,7 = 52,5·10 -6 м².

Произведем расчет по первому случаю с намоткой первичной катушки на сердечнике.
Зададим Вm — магнитную индукцию в сердечнике, так как этот метод более удобен для частот 400 Гц и ниже. Для ленточных кольцевых магнитопроводов максимальная индукция Вm — 1,5. 2 Тл. Выберем 1 Тл.
(З) Напряженность поля, необходимая для создания магнитной индукции Вm = 1 Тл:
Н = Вm/µ·µо = 1/4π·10 -7 ·710 = 1120,8 А/м,
где µо — магнитная проницаемость в вакууме — 4π·10 -7 .
(4) Рассчитаем ток Аw, приходящий на Im магнитную силовую линию:
Aw = Н·Im = 1120,8·102,1·10ˉ³ = 114,4 А.
(5) Число витков W1 трансформатора тока: W1 = АwI1=114,4/20 = 5,72 витка. Возьмем W1 = 6 витков.
(6) Индуктивность L1 первичной обмотки:
L1 = µ·µо·W1²·S/Im = 4π·10 -7 ·710·6·52,5·10· -6 / 102,1·10 -3 = 16,52·10 -6 Гн.
(7) Индуктивное сопротивление ХL1 первичной обмотки на частоте сети f = 50 Гц:
ХL1 = 2π· f·L1 = 2·3,14·50·16,52·10 -6 = 5,186·10 -3 .
(8) Падение напряжения U1 на W1:
U1 = I1·ХL1 = 20·5,186·10 -3 = 0,104 В.
(8а) Мощность Р1 в первичной обмотке:
Р1 = U1·I1 = 0,104·20 = 2,08 Вт.
А теперь вспомним самую первую формулу: I1·W1 — I2·W2 = 0 и вычислим количество витков W2 трансформатора тока, задавшись током I2. Еще раз повторюсь: ток I2 трансформатора вы задаете сами исходя из соображений достаточности дальнейшей нагрузки, создаваемой схемами ограничения или схемами измерения. Пусть это будет ток I2 = 0,1 А.
(9) W2 = I1·W1/I2 = 20·6/0,1 =1200 витков.
(10) n = W2 / W1 = 1200/6 = 200 — коэффициент трансформации.
(11) Тогда U2 = U1·n.
U2 = 0,104·200 = 20,8 В.
Напряжение на вторичной обмотке трансформатора тока U2 вы можете рассчитать другим способом: сначала по формуле (2) рассчитать L2 — индуктивность вторичной обмотки трансформатора, ХL2 как в (7) и потом U2 как в (8). Значение должно быть одинаковым. Теперь, зная U2 и I2, рассчитаем Rс.
(12) Rс = U2/I2 = 20,8/0,1 = 208 Ом.
(13) Рассчитаем мощность на резисторе:
Р2 = U2·I2 = 20,8·0,1 = 2,08 Вт.
Возьмем резистор мощностью 2 Вт.
Обратите внимание на (8а) и сравните с (13). Мощность во вторичной обмотке не должна превышать мощность первичной. Как видите, напряжение на вторичной обмотке трансформатора получилось 20,8 В.
Рассчитав ток I2 и напряжение U2, вы можете подключить сюда вольтметр с полным током рамки не бопее 100 мА, шкалой в 25 В и косвенно измерять ток от 0. 20 А.
Но если вам этого напряжения недостаточно, то надо задать Вm не 1 Тл, а 1,2 и далее произвести расчет с (3) вновь, не боясь, что магнитопровод войдет в область насыщения сердечника, так как Вm может достигать и 2 Тл. Но можно задать I2 меньше и пересчитать, начиная с (9).

Произведем расчет по второму случаю с проводником через тороидальный сердчник.
Рассчитаем магнитную индукцию Вm поля, создаваемую проводником с током, в сердечнике по формуле:
(14) Вm = (µ·µо)(I1/2πRср).
Магнитопровод тот же: 40х25х10 мм.
Dср = (40 + 25)/2 = 32,5 мм = 32,5·10 -3 м.
Площадь сечения сердечника S = [(40 — 25)/2]·10 = 75 мм 2 = 75·10 -6 м 2 .
Поправка с учетом вышесказанного:
S = 75·10 -6 ·0,7 = 52,5·10 -6 м 2 .
Средняя длина магнитной силовой линии Im = 102,1 мм = 102,1·10 -3 м.
Rср=Dср/2.
Rср = 32,5/2 = 16,25·10 -6 м.
С — толщинa сердечника (рис.4).
На рис.5 показан разрез тoроидального сердечника по толщине ((это уточнение чертежа рис.4 (правый рисунок)). Rcp — средний радиус сердечника в мм; С — толщина сердечника в мм.
Линией АБ показан проводник с током, проходящий сквозь тороидальный сердечник. Линия АБ также является геометрическим центром тора. Стрелками внутри тора указано направление Вm.
Вычислим Вm по формуле (14).
(14′) Вm = 12,57·10 -7 ·710·20/6,28·16,25·10 -3 = 0,175 Тл.
Вычислим индуктивность этого провода:
(6′) L1 = (4π·10 -7 ·710)(0,9 2 /102,1·10 -3 ·52,5·10 -6 = 3,72·10 -7 Гн.
Индуктивнoе сопротивление ХL= 2π·f·L = 6,28·50·3,72·10 -7 = 1,17·10 -4 Ом.
Падение напряжения на первичной обмотке
U1 = I1·ХL = 20·1,17·10 -4 =2,33·10 -3 В.
Мощность в первичной обмотке
Р1 = U1·I1= 2.33·10 -3 ·20 =46,7·10 -3 Вт.
Возьмем I2 = 15·10 -3 А.
Тогда как в (9) W2 = I1·W1/I2
W2 = 20·0,9/15·10 -3 = 1200.
n=W2/W1=1200/0,9=1333.
U2= U1·n = 2,33·10 -3 ·1333 = 3,12 В.
Вы помните формулу для определения количества витков:
W = Е·10 4 /(4,44·f·В·S·kм)?
С учетом того, что S вычисляется в см 2 , я перепишу в м 2 , то есть уберется множитель 10 4 .
Е = 4,44·f·W·В·S·kм,
где kм — коэффициент заполнения медью.
Е = 4,44·50·1200·0,175·52,5·10 -6 ·0,7 = 3,675 В.
Как видите, почти совпало.
Кроме коэффициента kм должны применяться: kф — коэффициент формы; kс — коэффициент стали.
Я думаю, дальше пояснять нет надобности. В итоге Е будет иметь меньшее значение напряжения.
В формуле (6) W — количество витков — я поставил 0,9 витка первичной обмотки. Это объясняется сложностью магнитного поля, создаваемого проводником с током, проходящим через тор.
Все изложенное в этой статье вы можете проверить практически. Произведя расчет, я собрал этот тор и убедился на стенде, что теория права.

Читать также:  Ручной бур для почвы

Разделы сайта

DirectAdvert NEWS

Друзья сайта

ActionTeaser NEWS

Статистика

Расчет тока вторичной обмотки трансформатора

Магнитопровод низкочастотного трансформатора состоит из стальных пластин. Использование пластин вместо монолитного сердечника уменьшает вихревые токи, что повышает КПД и снижает нагрев.

Расчет тока вторичной обмотки трансформатора

Магнитопроводы вида 1, 2 или 3 получают методом штамповки.
Магнитопроводы вида 4, 5 или 6 получают путём навивки стальной ленты на шаблон, причём магнитопроводы типа 4 и 5 затем разрезаются пополам.

1, 4 – броневые,
2, 5 – стержневые,
6, 7 – кольцевые.

Чтобы определить сечение магнитопровода, нужно перемножить размеры «А» и «В». Для расчётов в этой статье используется размер сечения в сантиметрах.

Расчет тока вторичной обмотки трансформатора

Трансформаторы с витыми стержневым поз.1 и броневым поз.2 магнитопроводами.

Расчет тока вторичной обмотки трансформатора

Трансформаторы с штампованными броневым поз.1 и стержневым поз.2 магнитопроводами.

Расчет тока вторичной обмотки трансформатора

Трансформаторы с витыми кольцевыми магнитопроводами.

Габаритную мощность трансформатора можно приблизительно определить по сечению магнитопровода. Правда, ошибка может составлять до 50%, и это связано с рядом факторов. Габаритная мощность напрямую зависит от конструктивных особенностей магнитопровода, качества и толщины используемой стали, размера окна, величины индукции, сечения провода обмоток и даже качества изоляции между отдельными пластинами.

Чем дешевле трансформатор, тем ниже его относительная габаритная мощность.
Конечно, можно путём экспериментов и расчетов определить максимальную мощность трансформатора с высокой точностью, но смысла большого в этом нет, так как при изготовлении трансформатора, всё это уже учтено и отражено в количестве витков первичной обмотки.
Так что, при определении мощности, можно ориентироваться по площади сечения набора пластин проходящего через каркас или каркасы, если их две штуки.

Где:
P – мощность в Ваттах,
B – индукция в Тесла,
S – сечение в см²,
1,69 – постоянный коэффициент.

Расчет тока вторичной обмотки трансформатора

Сначала определяем сечение, для чего перемножаем размеры А и Б.

Затем подставляем размер сечения в формулу и получаем мощность. Индукцию я выбрал 1,5Tc, так как у меня броневой витой магнитопровод.

Если требуется определить необходимую площадь сечения манитопровода исходя из известной мощности, то можно воспользоваться следующей формулой:

Нужно вычислить сечение броневого штампованного магнитопровода для изготовления трансформатора мощностью 50 Ватт.

О величине индукции можно справиться в таблице. Не стоит использовать максимальные значения индукции, так как они могут сильно отличаться для магнитопроводов различного качества.

Максимальные ориентировочные значения индукции.
Расчет тока вторичной обмотки трансформатора

КАК РАССЧИТАТЬ ПОНИЖАЮЩИЙ ТРАНСФОРМАТОР.

В домашнем хозяйстве бывает необходимо оборудовать освещение в сырых помещениях: подвале или погребе и т.д. Эти помещения имеют повышенную степень опасности поражения электрическим током.

В этих случаях следует пользоваться электрооборудованием, рассчитанным на пониженное напряжение питания, не более 42 вольт .
Можно пользоваться электрическим фонарем с батарейным питанием или воспользоваться понижающим трансформатором с 220 вольт на 36 вольт .

В качестве примера давайте рассчитаем и изготовим однофазный силовой трансформатор 220/36 вольт.
Для освещения таких помещений подойдет электрическая лампочка на 36 Вольт и мощностью 25 — 60 Ватт . Такие лампочки с цоколем под стандартный патрон продаются в магазинах электро-товаров.

Если вы найдете лампочку другой мощности, например на 40 ватт , нет ничего страшного — подойдет и она. Просто наш трансформатор будет выполнен с запасом по мощности.

Мощность во вторичной цепи: Р2 = U2 • I2 = 60 ватт

Где:
Р2 – мощность на выходе трансформатора, нами задана 60 ватт ;
U2 — напряжение на выходе трансформатора, нами задано 36 вольт ;
I2 — ток во вторичной цепи, в нагрузке.

КПД трансформатора мощностью до 100 ватт обычно равно не более η = 0,8 .
КПД определяет, какая часть мощности потребляемой от сети идет в нагрузку. Оставшаяся часть идет на нагрев проводов и сердечника. Эта мощность безвозвратно теряется.

Определим мощность потребляемую трансформатором от сети с учетом потерь:

Мощность передается из первичной обмотки во вторичную через магнитный поток в магнитопроводе. Поэтому от значения Р1 , мощности потребляемой от сети 220 вольт , зависит площадь поперечного сечения магнитопровода S .

Расчет тока вторичной обмотки трансформатора

Магнитопровод – это сердечник Ш – образной или О – образной формы, набранный из листов трансформаторной стали. На сердечнике будет располагаться каркас с первичной и вторичной обмотками.

Площадь поперечного сечения магнитопровода рассчитывается по формуле:

Где:
S — площадь в квадратных сантиметрах,
P1 — мощность первичной сети в ваттах.

По значению S определяется число витков w на один вольт по формуле:

В нашем случае площадь сечения сердечника равна S = 10,4 см.кв .

Рассчитаем число витков в первичной и вторичной обмотках.

Число витков в первичной обмотке на 220 вольт:

Число витков во вторичной обмотке на 36 вольт:

В режиме нагрузки может быть заметная потеря части напряжения на активном сопротивлении провода вторичной обмотки. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного. Возьмем W2 = 180 витков .

Величина тока в первичной обмотке трансформатора:

Ток во вторичной обмотке трансформатора:

Диаметры проводов первичной и вторичной обмоток определяются по значениям токов в них исходя из допустимой плотности тока, количества ампер на 1 квадратный миллиметр площади проводника. Для трансформаторов плотность тока, для медного провода, принимается 2 А/мм² .

При такой плотности тока диаметр провода без изоляции в миллиметрах определяется по формуле:

Для первичной обмотки диаметр провода будет:

Диаметр провода для вторичной обмотки:

ЕСЛИ НЕТ ПРОВОДА НУЖНОГО ДИАМЕТРА , то можно взять несколько, соединенных параллельно, более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу.

Площадь поперечного сечения провода определяется по формуле:

где: d — диаметр провода.

Например: мы не смогли найти провод для вторичной обмотки диаметром 1,1 мм .

Площадь поперечного сечения провода диаметром 1,1 мм равна:

Округлим до 1,0 мм² .

Из таблицы выбираем диаметры двух проводов сумма площадей поперечного сечения которых равна 1.0 мм² .

Расчет тока вторичной обмотки трансформатора

Например, это два провода диаметром по 0,8 мм . и площадью по 0,5 мм² .

Или два провода:

— первый диаметром 1,0 мм . и площадью сечения 0,79 мм² ,
— второй диаметром 0,5 мм . и площадью сечения 0,196 мм² .
что в сумме дает: 0,79 + 0,196 = 0,986 мм² .

Намотка катушки ведется двумя проводами одновременно, строго выдерживается равное количество витков обоих проводов. Начала этих проводов соединяются между собой. Концы этих проводов также соединяются.
Получается как бы один провод с суммарным поперечным сечением двух проводов.

Оставить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *