Примером шкалы интервалов может служить

В практической деятельности необходимо проводить измерения различных величин, характеризующих свойства объекта. Некоторые свойства проявляются только качественно, а другие – количественно. Разнообразие проявления любого свойства образуют множество. Если упорядочить элементы этих множеств, то можно получить шкалы измерений этих свойств.

Шкалы интервала – эти шкалы являются дальнейшим развитием шкал порядка и применяются для объектов, свойства которых удовлетворяют отношению эквивалентов, порядка и адитивности. Шкала интервалов состоит из одинаковых интервалов, имеет единицы измерения и произвольно выбранное начало. К таким шкалам относятся летосчисления по различным календарям, а также температурные шкалы (Фаренгейта, Цельсия и т.д.).

Шкалы соотношения – описывают свойства имперических объектов, которые удовлетворяют отношением эквивалентов порядка и адитивности (шкалы 2-го рода), а в ряде случаев и пропорциональности (шкалы 1-го роды). В шкалах отношения существует однозначный естественный критерий нулевого количественного проявления свойства и единицы измерений. С формальной точки зрения шкала отношений является шкалой интервалов с естественным началом отсчёта. К значениям, полученным по этой шкале применимы все арифметические действия, что имеет важное значение при измерении физических величин.

Абсолютные шкалы – это шкалы, обладающие всеми признаками шкал отношений, но дополнительно имеющие естественное однозначное определение единицы измерения, и не зависящая от принятой системы единиц измерения. Такие шкалы соответствуют относительным величинам (например, коэффициент усиления).

Доступные файлы (1):

1.doc803kb.24.11.2011 11:52Примером шкалы интервалов может служитьскачать

содержание

    Смотрите также:
  • Методология и методы психолого-педагогических исследований[ лекция ]
  • по методология и методы психолого – педагогических исследований. Компьютерные тесты: понятие, общая характеристика[ реферат ]
  • Презентация – Характеристика общенаучного уровня методологии. Организация и проведение психолого – педагогического эксперимента[ реферат ]
  • по дисциплине – Наука. Методы, критерии научности, научные исследования (Презентация)[ лекция ]
  • Исследование систем управления[ лекция ]
  • Программа дисциплины – Методология и методы исследований в социологии: современные методы анализа социологических данных[ стандарт ]
  • Практическая работа. Коррекционная программа по созданию психолого-педагогических условий для преодоления тревожности у детей шестого года жизни в системе детско[ документ ]
  • Методология науки[ реферат ]
  • Планирование научных исследований[ реферат ]
  • Методология прикладных маркетинговых исследований и техника персональных коммуникаций[ лекция ]
  • Бурлакина О.В., Кузьмина Е.С. Требования к составлению психолого-педагогических характеристик детей, поступающих на психолого-медико-педагогическую комиссию[ документ ]
  • Новое в психолого-педагогических исследованиях 2008 №01[ документ ]

§ 4. Шкала интервалов

Шкала интервалов имеет отличительные свойства, заключающиеся в следующих возможностях: определение признаков, свойств предметов, выявление различия в степени измеряемых свойств, опора на условно определенную нулевую точку отсчета, произвольное определение величины единицы измерения (интервальной величины).

Интервальная шкала характеризуется тем, что интервалы между объектами могут быть измерены. При создании шкал интервалов основная проблема состоит в том, чтобы изобрести такие операции, которые позволили бы уравнять единицы шкал. В этой шкале имеются интервалы с соответствующими номерами, и характер ответов испытуемого фиксируется на определенной точке шкалы, выражающей его отношение к данному вопросу.

При помощи интервальной шкалы измерений имеется возможность определения не только признаков свойств предметов, но и количественное различие степеней свойств этих предметов. Здесь имеется единица измерения или опорные точки измерения. Поэтому число, присвоенное измеряемому признаку, приблизительно соответствует количеству измеряемого свойства. В соответствии с этим все интервальные шкалы можно подразделить на равномерные с опорой на единицы измерения и неравномерные с «эталонными» опорными точками. Все интервальные шкалы имеют нулевую точку, но нулевая точка интервальной шкалы произвольна и не указывает на отсутствие свойства. Это означает, что оцениваемое свойство предметов не пропадает, когда результат измерения равен нулю. Например, нулевая точка температурной шкалы Цельсия выбрана условно и равна температуре таяния льда, тогда как вода при нуле градусов Цельсия все же имеет некоторую температуру.

На шкале интервалов мы имеем равные расстояния между делениями, они равноудалены друг от друга. И тем не менее мы не можем установить пропорций (соотношение) с помощью значений этой шкалы: температура, равная 50 градусам, не может быть в два раза теплее, чем температура 25 градусов. Если предмет A имеет температуру 25 градусов, а предмет B – 50 градусов, то мы уверенно можем утверждать только одно: разность температур здесь столь же велика, как и между предметом D, имеющим температуру 75 градусов, и предметом U, имеющим температуру 100 градусов, т.е. разность температур составляет в каждом случае 25 градусов. Эти рассуждения обусловлены тем, что три момента на шкале интервалов устанавливаются произвольно: нуль шкалы (точка отсчета), величина единицы измерения и направление, в котором ведется подсчет.

Читать также:  Как крепится токарный патрон

Также произвольно устанавливается точка отсчета в тщательно сконструированных и стандартизированных тестах интеллекта, в которых вообще не известна абсолютная точка отсчета. Даже если при выполнении теста интеллекта не будет решена ни одна задача, мы не может утверждать, что умственное развитие испытуемого равно нулю. Шкала интервалов не позволяет нам также утверждать, будто некто, чей коэффициент интеллекта (IQ) составляет 140, в два раза более развит, чем тот, чей коэффициент равен 70. Мы знаем лишь, что разность между показателями величины IQ 140 и 70 столь же велика, как и между IQ 130 и IQ 60, а именно 70 единиц IQ.

Хотя шкала интервалов не позволяет нам сделать заключение о пропорциях между различными значениями шкалы, она тем не менее называется метрической шкалой, и с ее помощью мы можем выполнять обычные алгебраические операции типа сложения величин и вычисления средней арифметической величины. К числам, полученным при интервальном измерении, допустима операция вычитания, однако операция сложения, умножения и деления содержит в себе элемент неопределенности. Таким образом, шкала интервалов имеет значительные преимущества с точки зрения техники измерения по сравнению с номинальной и порядковой шкалами (см. табл. 11).

Характеристики шкалы интервалов

Свойства шкалыОпределяет величину различия проявления свойств. Не определяет уровни исчезновения свойств. Имеет масштабную единицу. Сравнивает на сколько больше
Область примененияУровни проявления психических, физических свойств. Календарное время. Измерение температуры по шкале Цельсия, Фаренгейта. Рейтинговая оценка в учебе, спорте
Статистический аппаратЧастота ni. Относительная частота wi. Квантили Pi. Мода Mo. Медиана Me. Среднее Примером шкалы интервалов может служить. Дисперсия D. Коэффициент корреляции rxy

^

§ 5. Шкала отношений

Шкала отношений (пропорциональная шкала) характеризуются возможностью определения каждого из следующих четырех соотношений: равенство, ранговый порядок, равенство интервалов и равенство отношений. В свою очередь, равенство отношений может быть установлено только в том случае, когда по шкале может быть найдена естественная (абсолютная) нулевая точка.

Измерение в шкале отношений существенно отличается от интервального тем, что положение абсолютной нулевой точки известно, что указывает на полное отсутствие измеряемого свойства. Все операции, присущие цифрам (сложение, вычитание, умножение и деление), можно производить без каких-либо ограничений. Отношения чисел, присвоенных в измерении, отражают количественные отношения измеряемого свойства. Поэтому в условиях шкалы отношений возможны утверждения, что у A в два, четыре раза больше свойств, чем у B. Значение абсолютного нуля свидетельствует об отсутствии оцениваемого свойства.

Примерами измерения в шкале отношений могут служить измерения размеров и веса предметов, измерение температуры по шкале Кельвина. Эти отношения могут быть интерпретированы как отношения свойств измеряемых объектов. Числа, присвоенные предметам, обладают всеми свойствами объектов интервальной шкалы, но, помимо этого, на шкале существует абсолютный нуль.

В педагогике, психологии и других социальных науках подобная шкала может использоваться только в том случае, если измерению подлежат размер, вес и тому подобные признаки испытуемых. Изучая психические признаки, мы в лучшем случае достигнем уровня шкалы интервалов (см. табл. 12).

Характеристика шкалы отношений

Свойства шкалыОпределяет абсолютно любые отношения между уровнями проявления свойств. Имеет масштабную единицу. Фиксирует исчезновение свойства
Область примененияСкорость выполнения задания. Количество однородных сделанных ошибок. Количество запоминаемых при первоначальном изучении слов иностранного языка. Процент учащихся. Объем часов по предметам. Измерение температуры по шкале Кельвина (абсолютный нуль). Измерение массы, размеров, отсчет времени от начала (до конца)
Статистический аппаратЧастота ni. Относительная частота wi. Квантили Pi. Мода Mo. Медиана Me. Среднее Примером шкалы интервалов может служить. Дисперсия D. Коэффициент корреляции rxy

^

Основные понятия по теме

РАСПРЕДЕЛЕНИЕ – совокупность данных в выборке, сгруппированных и упорядоченных по определенным характеристикам.

Шкала измерений – это совокупность значений, позволяющих количественно или качественно отобразить свойства объекта измерений. Разнообразные проявления (количественные или качественные) любого свойства образуют множества, отображения элементов которых на упорядоченное множество чисел или в более общем случае условных знаков образуют шкалы измерения этих свойств. Шкала измерений количественного свойства является шкалой физической величины. Шкала физической величины – это упорядоченная последовательность значений ФВ, принятая по соглашению на основании результатов точных измерений.

Читать также:  Как снять показания электросчетчика день ночь

Виды шкал измерений

В практической деятельности необходимо проводить измерения различных величин, характеризующих свойства тел, веществ, явлений и процессов. Некоторые свойства измерительных шкал в метрологии проявляются только качественно, другие – количественно.

Шкала – упорядоченный числовой или символьный ряд значений, отражающий допустимые вариации значений измеряемой величины.

В соответствии с логической структурой проявления свойств различают пять основных видов шкал измерений: шкалы наименований, шкалы порядка, шкалы интервалов, шкалы отношений, абсолютные шкалы.

Номинальная шкала (шкала наименований)

Примером шкалы интервалов может служить

Рисунок – Пример номинальной шкалы (атлас цветов)

Такие шкалы измерений в метрологии используются для классификации эмпирических объектов, свойства которых проявляются только в отношении эквивалентности эти свойства нельзя считать физическими величинами, поэтому шкалы такого вида но являются шкалами ФВ. Номинальные шкалы, или, как их еще называют шкалы наименований так же называют шкалами измерений, или шкалами классификаций. Это самый простой тип шкал, основанный на приписывании качественным свойствам объектов чисел, играющих роль имен.

В номинальных шкалах, в которых отнесение отражаемого свойства к тому или иному классу эквивалентности осуществляется с использованием органов чувств человека, наиболее адекватен результат, выбранный большинством экспертов. При этом большое значение имеет правильный выбор классов эквивалентной шкалы – они должны надежно различаться наблюдателями, экспертами, оценивающими данное свойство. Нумерация объектов по шкале наименований осуществляется по принципу: "не приписывай одну и ту же цифру разным объектам". Числа, приписанные объектам, могут быть использованы для определения вероятности или частоты появления данного объекта, но их нельзя использовать для суммирования и других математических операций.

Поскольку данные шкалы характеризуются только отношениями эквивалентности, то в них отсутствует понятия нуля, "больше" или "меньше" и единицы измерения. Примером номинальных шкал являются широко распространенные атласы цветов, предназначенные для идентификации цвета.

Шкала порядка (рангов)

Если свойство данного эмпирического объекта проявляет себя в отношении эквивалентности и порядка по возрастанию или убыванию количественного проявления свойства, то для него может быть построена шкала порядка. Она является монотонно возрастающей или убывающей и позволяет установить отношение больше/меньше между величинами, характеризующими указанное свойство. В шкалах порядка существует или не существует нуль, но принципиально нельзя ввести единицы измерения, так как для них не установлено отношение пропорциональности и соответственно нет возможности судить во сколько раз больше или меньше конкретные проявления свойства.

В случаях, когда уровень познания явления не позволяет точно установить отношения, существующие между величинами данной характеристики, либо применение удобно и достаточно для практики, используют условные (эмпирические) шкалы порядка. Условная шкала – это шкала ФВ, исходные значения которой выражены в условных единицах. Пример шкалы порядка – шкала вязкости Энглера, 12-бальная шкала Бофорта для силы морского ветра.

Примером шкалы интервалов может служить

Рисунок – Пример шкалы порядка (шкала Бофорта)

Широкое распространение получили шкалы измерений порядка с нанесенными на них реперными точками. К таким шкалам, например, относится шкала Мооса для определения твердости минералов, которая содержит 10 опорных (реперных) минералов с различными условными числами твердости: тальк – 1; гипс – 2; кальций – 3; флюорит – 4; апатит – 5; ортоклаз – 6; кварц – 7; топаз – 8; корунд – 9; алмаз – 10. Отнесение минерала к той или иной градации твердости осуществляется на основании эксперимента, который состоит в том, что испытуемый материал царапается опорным. Если после царапанья испытуемого минерала кварцем (7) на нем остается след, а после ортоклаза (6) – не остается, то твердость испытуемого материала составляет более 6, но менее 7. Более точного ответа в этом случае дать невозможно,

В условных шкалах одинаковым интервалам между размерами данной величины не соответствуют одинаковые размерности чисел, отображающих размеры. С помощью этих чисел можно найти вероятности, моды, медианы, квантили, однако их нельзя использовать для суммирования, умножения и других математических операция. Определение значения величин при помощи шкал порядка нельзя считать измерением, так как на этих шкалах не могут быть введены единицы измерения. Операцию по приписыванию числа требуемой величине следует считать оцениванием. Оценивание по шкалам порядка является неоднозначным и весьма условным, о чем свидетельствует рассмотренный пример.

Читать также:  Отрезной резец для токарного станка по дереву

Шкала интервалов (разностей)

Эти шкалы измерений в метрологии являются дальнейшим развитием шкал порядка и применяются для объектов, свойства которых удовлетворяют отношениям эквивалентности, порядка и аддитивности. Шкала интервалов состоит из одинаковых интервалов, имеет единицу измерения и произвольно выбранное начало – нулевую точку. Пример шкалы интервалов – летоисчисление по различным календарям, в которых за начало отсчета принято либо сотворение мира, либо рождество Христово и т.д. Температурные шкалы Цельсия, Фаренгейта и Реомюра также являются шкалами интервалов.

Примером шкалы интервалов может служить

Рисунок – Пример шкалы интервалов (Температурные шкалы Цельсия и Фаренгейта)

На шкале интервалов определены действия сложения и вычитания интервалов. Действительно, по шкале времени интервалы можно суммировать или вычитать и сравнивать, во сколько раз один интервал больше другого, но складывать даты каких-либо событий просто бессмысленно.

Шкала интервалов величины Q описывается уравнением Q = Qо + q[Q], где q – числовое значение величины; Qо – начало отсчета шкалы; [Q] единица рассматриваемой величины. Такая шкала полностью определяется заданием начала отсчета Qо шкалы и единицы данной величины [Q].

Задать шкалу практически можно двумя путями. При первом из них выбираются два значения Qо и Q1, величины, которые относительно просто реализованы физически. Эти значения называются опорными точками, или основными реперами, а интервал (Q1

Qо) – основным интервалом. Точка Qо принимается за начало отсчета, а величина (Q1 -Qо)/n=[Qо] за единицу Q. При этом n выбирается таким, чтобы [Q] было целой величиной.

Примером шкалы интервалов может служить

Рисунок – Пример шкалы отношений

При втором пути задания шкалы единица воспроизводится непосредственно как интервал, его некоторая доля или некоторое число интервалов размеров данной величины, а начало отсчета выбирают каждый раз по-разному в зависимости от конкретных условий изучаемого явления. Пример такого подхода – шкала времени, в которой 1с = 9192631770 периодов излучения, соответствующих переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133. За начало отсчета принимается начало изучаемого явления.

Шкала отношений

Шкала отношений описывает свойства эмпирических объектов, которые удовлетворяют отношениям эквивалентности, порядка и аддитивности (шкалы второго рода – аддитивные), а в ряде случаев и пропорциональности (шкалы первого рода – пропорциональные). Пример шкалы отношений – шкала массы (второго рода), термодинамической температуры (первого рода).

В шкалах отношений существует однозначный естественный критерий нулевого количественного проявления свойства и единица измерений, установленная по соглашению. С формальной точки зрения этот вид шкал измерений является шкалой интервалов с естественным началом отсчета. К значениям, полученным по этой шкале, применимы все арифметические действия, что имеет важное значение при измерений физических величин.

Примером шкалы интервалов может служить

Рисунок – Пример абсолютной шкалы (шкала температур Кельвина)

Шкалы отношений – самые совершенные. Они описываются уравнением Q = q[Q], где Q – ФВ, для которой строится шкала, [Q] – ее единица измерения, q – числовое значение ФВ. Переход от одной шкалы отношений к другой происходит в соответствии с уравнением q2 = q1[Q1]/[Q2].

Абсолютные шкалы

Абсолютные шкалы – это шкалы, обладающие всеми признаками шкал отношений, но дополнительно имеющие естественное однозначное определение единицы измерения и не зависящие от принятой системы единиц измерения. Примером абсолютной шкалы могут стать шкалы с относительным величинам: коэффициенту усиления, ослабления и др. Для образования многих производных единиц в системе СИ используются безразмерные и счетные единицы абсолютных шкал.

Отметим, что шкалы наименований и порядка называют неметрическими (концептуальными), а шкалы интервалов и отношений – метрическими (материальными). Метрические и абсолютные шкалы относятся к разряду линейных. Практическая реализация шкал измерений в метрологии осуществляется путем стандартизации как самих шкал и единиц измерений, так и, в необходимых случаях, способов и условий их однозначного воспроизведения.

Изготовление измерительной шкалы своими руками

Видео о том, как самостоятельно сделать шкалу стрелочного прибора на примере изготовления шкалы амперметра.

Оцените статью
Добавить комментарий

Adblock detector