Предел прочности металлов таблица

Предел прочности – максимальное напряжение, которому может подвергаться материал до момента его разрушения. Если говорить о данном показателе по отношению к металлам, то здесь он равен соотношению критической нагрузки к площади его поперечного сечения при проведении теста на разрыв. В целом же прочность показывает, какая сила требуется для преодоления и разрыва внутренних связей между молекулами материала.

Предел прочности металлов таблица

Каким образом производится испытание на прочность?

Тестирование металлов на прочность выполняется при помощи специализированных механизмов, которые позволяют устанавливать необходимую мощность при испытаниях на разрыв. Состоят такие машины из специального нагружающего элемента, с помощью которого создается необходимое усилие.

Оборудование для испытания металлов на прочность дает возможность производить растяжение тестируемых материалов и устанавливать определенные величины усилия, которое прилагается к образцу. На сегодняшний день существуют гидравлические и механические типы механизмов для испытания материалов.

Виды пределов прочности

Предел прочности является одним из основных свойств материалов. Информация о предельной прочности тех или иных материалов является крайне важной при необходимости определения возможностей их применения в тех или иных промышленных сферах.

Выделяют несколько отдельных пределов прочности материалов:

  • при сжатии;
  • при изгибе;
  • при кручении;
  • при растяжении.

Формирование понятия о пределе прочности металлов

О пределе прочности в свое время говорил еще Галилей, который определил, что гранично-допустимый предел сжатия и растяжения материалов зависит от показателя их поперечного сечения. Благодаря исследованиям ученого возникла ранее неизведанная величина – напряжение разрушения.

Предел прочности металлов таблица

Современное учение о прочности металлов сформировалось в средине XX века, что было необходимо исходя из потребности в разработке научного подхода для предотвращения возможных разрушений промышленных сооружений и машин во время их эксплуатации. До этого момента при определении прочности материала учитывалась лишь степень его пластичности и упругости и совершенно не учитывалась внутренняя структура.

Предел прочности стали

Сталь является основным сырьевым материалом в большинстве промышленных сфер. Широко применяется она в строительстве. Именно поэтому для выполнения конкретных задач очень важно заблаговременно подбирать высококачественный, действительно подходящий тип стали. От правильного расчета предела прочности определенной марки стали напрямую зависит результат и качество выполненных работ.

Предел прочности металлов таблица

Как пример можно привести несколько значений предельных показателей прочности сталей. Данные значения основаны на требованиях государственных стандартов и представляют собой рекомендуемые параметры. Так, для изделий, отлитых из конструкционной нелегированной стали, предусмотрен стандарт ГОСТ 977-88, согласно которому, предельное значение прочности при испытании на растяжение составляет порядка 50-60 кг/мм 2 , что равняется примерно 400-550 МПа. Аналогичная марка стали после прохождения процедуры закалки приобретает значение сопротивления на растяжение более 700 МПа.

Объективный предел прочности стали 45 (или любой другой марки материала, в равной степени как и железа или чугуна, а также остальных сплавов металла) зависит от целого ряда факторов, которые должны определяться исходя из поставленных задач, что ложатся на материал при его применении.

Прочность меди

Предел прочности металлов таблица

В обычных условиях комнатной температуры отожженная техническая медь обладает пределом прочности порядка 23 кг/мм 2 . При значительных температурных нагрузках на материал его предельная прочность существенно снижается. На показателях предельной прочности меди отражается наличие в металле всевозможных примесей, которые могут как повышать данный показатель, так и приводить к его снижению.

Прочность алюминия

Отожженная фракция технического алюминия при комнатной температуре отличается пределом прочности до 8 кг/мм 2 . Повышение чистоты материала увеличивает его пластичность, но отражается на снижении прочности. В качестве примера можно взять алюминий, показатель чистоты которого составляет 99,99%. В данном случае предельная прочность материала достигает около 5 кг/мм 2 .

Предел прочности металлов таблица

Уменьшение предела прочности алюминиевой тестовой заготовки наблюдается при ее нагревании во время проведения испытаний на растяжение. В свою очередь, снижение температуры металла в пределах от +27 до -260 о С временно повышает исследуемый показатель в 4 раза, а при испытании фракции алюминия высочайшей чистоты – в целых 7 раз. В то же время несколько повысить прочность алюминия можно методом его легирования.

Прочность железа

На сегодняшний день методом промышленной и химической обработки удалось получить нитевидные кристаллы железа с пределом прочности до 13 000 Мпа. Наряду с этим, прочность технического железа, которое широко применяется в самых разнообразных сферах, составляет близко 300 МПа.

Естественно, каждый образец материала при его исследовании на уровень прочности обладает своими дефектами. На практике доказано, что реальная объективная предельная прочность любого металла, независимо от его фракции, меньше по сравнению с данными, полученными в ходе теоретических расчетов. Данную информацию необходимо обязательно принимать во внимание при выборе определенного типа и марки металла для выполнения конкретных задач.

Читать также:  Как подключиться к домофону в подъезде самостоятельно

Классификация стали

Сталь – деформируемый (ковкий) сплав железа с углеродом (до 2%) и другими элементами. Это важнейший материал, который применяется в большинстве отраслей промышленности. Существует большое число марок сталей, различающихся по структуре, химическому составу, механическим и физическим свойствам. Посмотреть основные виды продукции металлопроката и ознакомиться с ценами можно здесь.

Основные характеристики стали:

  • плотность
  • модуль упругости и модуль сдвига
  • коэффициент линейного расширения
  • и другие

По химическому составу стали делятся на углеродистые и легированные. Углеродистая сталь наряду с железом и углеродом содержит марганец (0,1-1,0%), кремний (до 0,4%).

Сталь содержит также вредные примеси (фосфор, серу, газы – несвязанный азот и кислород). Фосфор при низких температурах придает ей хрупкость (хладноломкость), а при нагревании уменьшает пластичность. Сера приводит к образованию мелких трещин при высоких температурах (красноломкость).

Чтобы придать стали какие-либо специальные свойста (коррозионной устойчивости, электрические, механические, , магнитные, и т.д.), в нее вводят легирующие элементы. Обычно это металлы: алюминий, никель, хром, молибден, и др. Такие стали называют легированными.

Свойства стали можно изменять путем применения различных видов обработки: термической (закалка, отжиг), химико-термической (цементизация, азотирование), термо-механической (прокатка, ковка). При обработке для получения необходимой структуры используют свойство полиморфизма, присущее стали так же, как и их основе – железу. Полиморфизм – способность кристаллической решетки менять свое строение при нагреве и охлаждении. Взаимодействие углерода с двумя модификациями (видоизменениями) железа – α и γ – приводит к образованию твердых растворов. Избыточный углерод, не растворяющийся в α-железе, образует с ним химическое соединение – цементит Fe3C. При закалке стали образуется метастабильная фаза – мартенсит – пересыщенный твердый раствор углерода в α-железе. Сталь при этом теряет пластичность и приобретает высокую твердость. Сочетая закалку с последующим нагревом (отпуском), можно добиться оптимального сочетания твердости и пластичности.

По назначению стали делятся на конструкционные, инструментальные и стали с особыми свойствами.

Конструкционные стали применяют для изготовления строительных конструкций, деталей машин и механизмов, судовых и вагонных корпусов, паровых котлов. Инструментальные стали служат для изготовления резцов, штампов и других режущих, ударно-штамповых и измерительных инструментов. К сталям с особыми свойствами относятся электротехнические, нержавеющие, кислотостойкие и др.

По способу изготовления сталь бывает мартеновской и кислородно-конверторной (кипящей, спокойной и полуспокойной). Кипящую сталь сразу разливают из ковша в изложницы, она содержит значительное количество растворенных газов. Спокойная сталь – это сталь, выдержанная некоторое время в ковшах вместе с раскислителями (кремний, марганец, алюминий), которые соединяясь с растворенным кислородом, превращаются в оксиды и выплывают на поверхность массы стали. Такая сталь имеет лучший состав и более однородную структуру, но дороже кипящей на 10-15%. Полуспокойная сталь занимает промежуточное положение между спокойной и кипящей.

В современной металлургии сталь выплавляют в основном из чугуна и стального лома. Основные виды агрегатов для ее выплавки: мартеновская печь, кислородный конвертер, электропечи. Наиболее прогрессивным в наши дни считается кислородно-конвертерный способ производства стали. В то же время развиваются новые, перспективные способы ее получения: прямое восстановление стали из руды, электролиз, электрошлаковый переплав и т.д. При выплавке стали в сталеплавильную печь загружают чугун, добавляя к нему металлические отходы и железный лом, содержащий оксиды железа, которые служат источником кислорода. Выплавку ведут при возможно более высоких температурах, чтобы ускорить расплавление твердых исходных материалов. При этом железо, содержащееся в чугуне, частично окисляется:

2Fe + O2 = 2FeO + Q

Образующийся оксид железа (II) FeO, перемешиваясь с расплавом, окисляет, кремний, марганец, фосфор и углерод, входящие в состав чугуна:

Si +2FeO = SiO2 + 2 Fe + Q

Mn + FeO = MnO + Fe + Q

C + FeO = CO + Fe – Q

Чтобы довести до конца окислительные реакции в расплаве, добавляют так называемые раскислители – ферромарганец, ферросилиций, алюминий.

Марки стали

Марки стали углеродистой

Углеродистая сталь обыкновенного качества в зависимости от назначения подразделяется на три группы:

  • группа А – поставляемая по механическим свойствам;
  • группа Б – поставляемая по химическому составу;
  • группа В – поставляемая по механическим свойствам и химическому составу.

В зависимости от нормируемых показателей стали группы А подразделяются на три категории: А1, А2, А3; стали группы Б на две категории: Б1 и Б2; стали группы В на шесть категорий: В1, В2, В3, В4, В5, В6. Для стали группы А установлены марки Ст0, Ст1, Ст2, Ст3, Ст4, Ст5, Ст6. Для стали группы Б марки БСт0, БСт1, БСт2, БСт3, БСт4, БСт5, БСт6. Сталь группы В изготовляется мартеновским и конвертерным способом. Для нее установлены марки ВСт2, ВСт3, ВСт4, ВСт5.

Буквы Ст обозначают сталь, цифры от 0 до 6 – условный номер марки стали в зависимости от химического состава и механических свойств. С повышением номера стали возрастают пределы прочности (σв) и текучести (σт) и уменьшается относительное удлинение (δ5).

Читать также:  Схема подключения камеры видеонаблюдения к компьютеру

Марку стали Ст0 присваивают стали, отбракованной по каким-либо признакам. Эту сталь используют в неответственных конструкциях.

В ответственных конструкциях применяют сталь Ст3сп.

Буквы Б и В указывают на группу стали, группа А в обозначении не указывается.

Если сталь относится к кипящей, ставится индекс "кп", если к полустойкой – "пс", к спокойной – "сп".

Качественные углеродистые конструкционные стали применяют для изготовления ответственных сварных конструкций. Качественные стали по ГОСТ 1050-74 маркируются двузначными цифрами, обзначающими среднее содержание углерода в сотых долях процента. Например, марки 10, 15, 20 и т.д. означают, что сталь содержит в среднем 0,10%, 0,15%, 0,2% углерода.

Сталь по ГОСТ 1050-74 изготовляют двух групп: группа I – с нормальным содержанием марганца (0,25-0,8%), группа II – с повышенным содержанием марганца (0,7-1,2%). При повышенном содержании марганца в обозначение дополнительно вводится буква Г, указывающая, что сталь имеет повышенное содержание марганца.

Марки стали легированной

Легированные стали кроме обычных примесей содержат элементы, специально вводимые в определенных количествах для обеспечения требуемых свойств. Эти элементы называются лигирующими. Лигированные стали подразделяются в зависимости от содержания лигирующих элементов на низколегированные (2,5% легирующих элементов), среднелегированные (от 2,5 до 10% и высоколегированные (свыше 10%).

Лигирующие добавки повышают прочность, коррозийную стойкость стали, снижают опасность хрупкого разрушения. В качестве легирующих добавок применяют хром, никель, медь, азот (в химически связанном состоянии), ванадий и др.

Легированные стали маркируются цифрами и буквами, указывающими примерный состав стали. Буква показывает, какой легирующий элемент входит в состав стали (Г – марганец, С – кремний, Х -хром, Н – никель, Д – медь, А – азот, Ф – ванадий), а стоящие за ней цифры – среднее содержание элемента в процентах. Если элемента содержится менее 1%, то цифры за буквой не ставятся. Первые две цифры указывают среднее содержание углерода в сотых долях процента.

Нержавеющая сталь. Свойства. Химический состав

Нержавеющая сталь – легированная сталь, устойчивая к коррозии на воздухе, в воде, а также в некоторых агрессивных средах. Наиболее распространены хромоникелевая (18% Cr b 9%Ni) и хромистая (13-27% Cr) нержавеющая сталь, часто с добавлением Mn, Ti и других элементов.

Добавка хрома повышает стойкость стали к окислению и коррозии. Такая сталь сохраняет прочность при высоких температурах. Хром входит также в состав износостойких сталей, из которых делают инструменты, шарикоподшипники, пружины.

Примерный химический состав нержавеющей стали ( в %)

Наименование сталиCSiMnPS
Хромистая сталь (нержавеющая и кислотостойкая)Не более
0,35-0,45
Не более
0,60
Не более
0,60
Не более
0,03
Не более
0,035
Хромоникелевая сталь (нержавеющая и кислотостойкая)0,060,50-1,01,0-2,00,0300,020
Хромоникелевая сталь (окалиностойкая и жаропрочная)0,201,502,000,0350,030

Дамасская и булатная сталь.

Дамасская сталь – первоначально то же, что и булат; позднее – сталь, полученная кузнечной сваркой сплетенных в жгут стальных полос или проволоки с различным содержанием углерода. Название получила от города Дамасск (Сирия), где производство этой стали было развито в средние века и, отчасти, в новое время.

Булатная сталь (булат) – литая углеродистая сталь со своеобразной структурой и узорчатой проверхностью, обладающая высокой твердостью и упругостью. Из булатной стали изготовляли холодное оружие исключительной стойкости и остроты. Булатная сталь упоминается еще Аристотелем. Секрет изготовления булатной стали, утерянный в средние века, раскрыл в XIX веке П.П.Аносов. Опираясь на науку, он определил роль углерода как элемента, влияющего на качество стали, а также изучил значение ряда других элементов. Выяснив важнейшие условия образования лучшего сорта углеродистой стали – булата, Аносов разработал технологию его выплавки и обработки (Аносов П.П. О булатах. Горный журнал, 1841, № 2, с.157-318).

Плотность стали, удельный вес стали и другие характеристики стали

Плотность стали – (7,7-7,9)*10 3 кг/м 3 ;

Удельный вес стали – (7,7-7,9) г/cм 3 ;

Удельная теплоемкость стали при 20°C – 0,11 кал/град;

Температура плавления стали – 1300-1400°C ;

Удельная теплоемкость плавления стали – 49 кал/град;

Коэффициент теплопроводности стали – 39ккал/м*час*град;

Коэффициент линейного расширения стали

(при температуре около 20°C) :

сталь 3 (марка 20) – 11,9 (1/град);

сталь нержавеющая – 11,0 (1/град).

Предел прочности стали при растяжении :

сталь для конструкций – 38-42 (кГ/мм 2 );

сталь кремнехромомарганцовистая – 155 (кГ/мм 2 );

сталь машиноподелочная (углеродистая) – 32-80 (кГ/мм 2 );

сталь рельсовая – 70-80 (кГ/мм 2 );

Плотность стали, удельный вес стали

Плотность стали – (7,7-7,9)*10 3 кг/м 3 (приблизительно 7,8*10 3 кг/м 3 );

Плотность вещества (в нашем случае стали) есть отношение массы тела к его объему (другими словами плотность равна массе единицы объема данного вещества):

Читать также:  Почему прыгает стиральная машина при отжиме индезит

d=m/V, где m и V – масса и объем тела.

За единицу плотности принимают плотность такого вещества, единица объема которого имеет массу, равную единице:
в системе СИ это 1 кг/м 3 , в системе СГС – 1 г/см 3 , в системе МКСС – 1 тем/м 3 . Эти единицы связаны между собой соотношением:

Удельный вес стали – (7,7-7,9) г/cм 3 (приблизительно 7,8 г/cм 3 );

Удельный вес вещества (в нашем случае стали) есть отношение силы тяжести Р однородного тела из данного вещества (в нашем случае стали) к объему тела. Если обозначить удельный вес буквой γ , то:

С другой стороны, удельный вес можно рассматривать, как силу тяжести единицы объема данного вещества (в нашем случае стали). Удельный вес и плотность связаны таким же соотношением, как вес и масса тела:

За единицу удельного веса принимают: в системе СИ – 1 н/м 3 , в системе СГС – 1 дн/см 3 , в системе МКСС – 1 кГ/м 3 . Эти единицы связаны между собой соотношением:

1 н/м 3 =0,0001 дн/см 3 =0,102 кГ/м 3 .

Иногда используют внесистемную единицу 1 Г/см 3 .

Так как масса вещества, выраженная в г, равна его весу, выраженному в Г, то удельный вес вещества (в нашем случае стали), выраженный в этих единицах, численно равен плотности этого вещества, выраженной в системе СГС.

Аналогичное численное равенство существует и между плотностью в системе СИ и удельным весом в системе МКСС.

Плотность стали

НаименованиеПлотность
СИ, кг/м 3СГС, г/см 3МКСС, тем/м 3
Сталь78007,8796

Модули упругости стали и коэффициент Пуассона

Наименование сталиМодуль Юнга, кГ/мм 2Модуль сдвига, кГ/мм 2Коэффициент Пуассона
Стали легированные
Стали углеродистые
21000
20000-21000
8100
8100
0,25-0,30
0,24-0,28

Величины допускаемых напряжений стали (кГ/мм 2 )

Наименование сталиДопускаемое напряжение
на растяжениена сжатие
Сталь легированная конструкционная в машиностроении10-40 и выше10-40 и выше
Сталь (ст. 3)1414
Сталь углеродистая конструкционная в машиностроении16-2516-25

Свойства некоторых электротехнических сталей

Марка сталиНачальная магнитная проницаемость, гс/эрсmМаксимальная магнитная проницаемость, гс/эрсmКоэрцитивная сила, эрсmИндукция при 25 эрсm , гсУдельное электрическое сопротивление, ом*мм 2 /м
Э 31
Э 41
Э 42
Э 45
Э 310
250
300
400
600
1000
5500
6000
7500
10000
30000
0,55
0,45
0,4
0,25
0,12
15200
14900
14900
14600
17800
0,52
0,6
0,6
0,62
0,5

Нормируемый химический состав углеродистых сталей обыкновенного качества по ГОСТ 380-71

Марка сталиСодержание элементов, %
CMnSiPS
не более
Ст0Не более 0,230,070,06
Ст2пс
Ст2сп
0,09. 0,150,25. 0,500,05. 0,07
0,12. 0,30
0,040,05
Ст3кп
Ст3пс
Ст3сп
Ст3Гпс
0,14. 0,220,30. 0,60
0,40. 0,65
0,40. 0,65
0,80. 1,10
не более 0,07
0,05. 0,17
0,12. 0,30
не более 0,15
0,040,05
Ст4кп
Ст4пс
Ст4сп
0,18. 0,270,40. 0,70не более 0,07
0,05. 0,17
0,12. 0,30
0,040,05
Ст5пс
Ст5сп
0,28. 0,370,50. 0,800,05. 0,17
0,12. 0,35
0,040,05
Ст5Гпс0,22. 0,300,80. 1,20не более 0,150,040,05

Нормируемые показатели механических свойств углеродистых сталей обыкновенного качества по ГОСТ 380-71

При расшифровке марок сталей используются следующие обозначения:
Химические добавки: Х – хром, Н – никель, К – кобальт, М – молибден, В – вольфрам, Т – титан, Д – медь, Г – марганец, С – кремний, Ф – ванадий, Р – бор, А – азот, Б – ниобий, Е – селен, Ц – цирконий, Ю – алюминий, Ч – показывает о наличии редкоземельных металлов.
Конструкционные стали обыкновенного качества нелегированные обозначаются буквами Ст, например Ст20, Ст45.
Буквенные обозначения применяются также для указания способа раскисления стали:
КП – кипящая сталь;
ПС – полуспокойная сталь;
СП – спокойная сталь.
Например, Ст3кп.
Цифра, стоящая после букв, условно обозначает (в десятых долях) процентное содержание углерода в стали. Например, Ст20, означает, что сталь содержит 0,2% углерода.
Если первым в марке стали стоит число, то это число указывает содержание углерода в десятых долях процента, например 12Г2 – углерода 0,12%. Так же в марках сталей после букв обозначающих химические добавки ставится число указывающее содержание добавки в процентах, например 12Г2 – углерода 0,12%, марганца – 2%. Обычно числа после обозначения химической добавки ориентировочные, если числа нет, то содержание химической добавки в стали менее 1,5%.

Оставить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *