Плотность титана и алюминия

С помощью таблицы плотности металлов и сплавов можно рассчитать вес, необходимой длины выбранного вами проката. Это необходимо в тех случаях, когда в смете весь сортамент рассчитан в длине, а продажа осуществляется по весу. Также зная удельную плотность металлов из таблицы можно рассчитать вес конструкции, суммируя массу каждого элемента, входящего в ее состав. Необходимость в таком расчете возникает при подборе транспорта для транспортировки данной конструкции. Плотность металлов в таблице позволяет вычислить плотность сплава, состав которого известен в процентном соотношении. Зная массу и материал любой детали, возможно вычислить ее объем.

Наименование группыНаименование материала, маркаρК
ЧИСТЫЕ МЕТАЛЛЫ
Чистые металлыАлюминий2,70,34
Бериллий1,840,23
Ванадий6,5-7,10,83-0,90
Висмут9,81,24
Вольфрам19,32,45
Галлий5,910,75
Гафний13,091,66
Германий5,330,68
Золото19,322,45
Индий7,360,93
Иридий22,42,84
Кадмий8,641,10
Кобальт8,91,13
Кремний2,550,32
Литий0,530,07
Магний1,740,22
Медь8,941,14
Молибден10,31,31
Марганец7,2-7,40,91-0,94
Натрий0,970,12
Никель8,91,13
Олово7,30,93
Палладий12,01,52
Платина21,2-21,52,69-2,73
Рений21,02,67
Родий12,481,58
Ртуть13,61,73
Рубидий1,520,19
Рутений12,451,58
Свинец11,371,44
Серебро10,51,33
Талий11,851,50
Тантал16,62,11
Теллур6,250,79
Титан4,50,57
Хром7,140,91
Цинк7,130,91
Цирконий6,530,82
СПЛАВЫ ИЗ ЦВЕТНЫХ МЕТАЛЛОВ
Алюминиевые сплавы литейныеАЛ12,750,35
АЛ22,650,34
АЛ32,700,34
АЛ42,650,34
АЛ52,680,34
АЛ72,800,36
АЛ82,550,32
АЛ9 (АК7ч)2,660,34
АЛ11 (АК7Ц9)2,940,37
АЛ13 (АМг5К)2,600,33
АЛ19 (АМ5)2,780,35
АЛ212,830,36
АЛ22 (АМг11)2,500,32
АЛ24 (АЦ4Мг)2,740,35
АЛ252,720,35
Баббиты оловянные и свинцовыеБ887,350,93
Б837,380,94
Б83С7,400,94
БН9,501,21
Б169,291,18
БС610,051,29
Бронзы безоловянные, литейныеБрАмц9-2Л7,60,97
БрАЖ9-4Л7,60,97
БрАМЖ10-4-4Л7,60,97
БрС309,41,19
Бронзы безоловянные, обрабатываемые давлениемБрА58,21,04
БрА77,80,99
БрАмц9-27,60,97
БрАЖ9-47,60,97
БрАЖМц10-3-1,57,50,95
БрАЖН10-4-47,50,95
БрБ28,21,04
БрБНТ1,78,21,04
БрБНТ1,98,21,04
БрКМц3-18,41,07
БрКН1-38,61,09
БрМц58,61,09
Бронзы оловянные деформируемыеБрОФ8-0,38,61,09
БрОФ7-0,28,61,09
БрОФ6,5-0,48,71,11
БрОФ6,5-0,158,81,12
БрОФ4-0,258,91,13
БрОЦ4-38,81,12
БрОЦС4-4-2,58,91,13
БрОЦС4-4-49,11,16
Бронзы оловянные литейныеБрО3Ц7С5Н18,841,12
БрО3Ц12С58,691,10
БрО5Ц5С58,841,12
БрО4Ц4С179,01,14
БрО4Ц7С58,701,10
Бронзы бериллиевыеБрБ28,21,04
БрБНТ1,98,21,04
БрБНТ1,78,21,04
Медно- цинковые сплавы (латуни) литейныеЛЦ16К48,31,05
ЛЦ14К3С38,61,09
ЛЦ23А6Ж3Мц28,51,08
ЛЦ30А38,51,08
ЛЦ38Мц2С28,51,08
ЛЦ40С8,51,08
ЛС40д8,51,08
ЛЦ37Мц2С2К8,51,08
ЛЦ40Мц3Ж8,51,08
Медно- цинковые сплавы (латуни), обрабатываемые давлениемЛ968,851,12
Л908,781,12
Л858,751,11
Л808,661,10
Л708,611,09
Л688,601,09
Л638,441,07
Л608,401,07
ЛА77-28,601,09
ЛАЖ60-1-18,201,04
ЛАН59-3-28,401,07
ЛЖМц59-1-18,501,08
ЛН65-58,601,09
ЛМц58-28,401,07
ЛМцА57-3-18,101,03
Латунные прутки прессованные и тянутыеЛ60, Л638,401,07
ЛС59-18,451,07
ЛЖС58-1-18,451,07
ЛС63-3, ЛМц58-28,501,08
ЛЖМц59-1-18,501,08
ЛАЖ60-1-18,201,04
Магниевые сплавы литейныеМл31,780,23
Мл41,830,23
Мл51,810,23
Мл61,760,22
Мл101,780,23
Мл111,800,23
Мл121,810,23
Магниевые сплавы деформируемыеМА11,760,22
МА21,780,23
МА2-11,790,23
МА51,820,23
МА81,780,23
МА141,800,23
Медно-никелевые сплавы, обрабатываемые давлениемКопель МНМц43-0,58,91,13
Константан МНМц40-1,58,91,13
Мельхиор МнЖМц30-1-18,91,13
Сплав МНЖ5-18,71,11
Мельхиор МН198,91,13
Сплав ТБ МН169,021,15
Нейзильбер МНЦ15-208,71,11
Куниаль А МНА13-38,51,08
Куниаль Б МНА6-1,58,71,11
Манганин МНМц3-128,41,07
Никелевые сплавыНК 0,28,91,13
НМц2,58,91,13
НМц58,81,12
Алюмель НМцАК2-2-18,51,08
Хромель Т НХ9,58,71,11
Монель НМЖМц28-2,5-1,58,81,12
Цинковые сплавы антифрикционныеЦАМ 9-1,5Л6,20,79
ЦАМ 9-1,56,20,79
ЦАМ 10-5Л6,30,80
ЦАМ 10-56,30,80
СТАЛЬ, СТРУЖКА, ЧУГУН
Нержавеющая сталь04Х18Н107,901,00
08Х137,700,98
08Х17Т7,700,98
08Х20Н14С27,700,98
08Х18Н107,901,00
08Х18Н10Т7,901,00
08Х18Н12Т7,951,01
08Х17Н15М3Т8,101,03
08Х22Н6Т7,600,97
08Х18Н12Б7,901,00
10Х17Н13М2Т8,001,02
10Х23Н187,951,01
12Х137,700,98
12Х177,700,98
12Х18Н10Т7,901,01
12Х18Н12Т7,901,00
12Х18Н97,901,00
15Х25Т7,600,97
Сталь конструкционнаяСталь конструкционная7,851,0
Стальное литьеСтальное литьё7,800,99
Сталь быстрорежущая с содержанием вольфрама, %58,101,03
108,351,06
158,601,09
188,901,13
Стружка (т/м 3 )алюминиевая мелкая дроблёная0,70
стальная (мелкий вьюн)0,55
стальная (крупный вьюн)0,25
чугунная2,00
Чугунсерый7,0-7,20,89-0,91
ковкий и высокопрочный7,2-7,40,91-0,94
антифрикционный7,4-7,60,94-0,97
Читать также:  Обозначение накатки на чертеже гост

Наша продукция

Наши услуги

Новости

07.03.2019 C праздником 8 марта!
Дорогие женщины, поздравляем вас с Международным женским днем!

22.02.2019 C Днем защитника Отечества!
Поздравляем с Днём защитника Отечества и хотим пожелать силы, мужества и отваги!

Титан обладает высокой прочностью, хорошей коррозионной стойкостью и при этом имеет сравнительно небольшую массу, что делает его применение незаменимым в областях, где важны хорошие механические свойства изделий одновременно с их массой. На странице представлено описание данного металла: физические, химические свойства, области применения, марки и его сплавов, виды продукции.

Основные сведения

История открытия

Свойства титана

В периодической системе элементов Д. И. Менделеева Ti расположен в IV группе 4-го периода под номером 22. В важнейших и наиболее устойчивых соединениях металл четырехвалентен. По внешнему виду похож на сталь. Титан относится к переходным элементам. Данный металл плавится при довольно высокой температуре (1668±4 °С) и кипит при 3300 °С, скрытая теплота плавления и испарения почти в два раза больше, чем у железа.

Известны две аллотропические модификации титана (две разновидности данного металла, имеющие одинаковый химический состав, но различное строение и свойства). Низкотемпературная альфа-модификация, существующая до 882,5 °С и высокотемпературная бетта-модификация, устойчивая от 882,5 °С и до температуры плавления.

По плотности и удельной теплоемкости титан занимает промежуточное место между двумя основными конструкционными металлами: алюминием и железом. Стоит также отметить, что его механическая прочность примерно вдвое больше, чем чистого железа, и почти в шесть раз выше, чем алюминия. Но указанный материал может активно поглощать кислород, азот и водород, которые резко снижают пластические свойства металла. С углеродом титан образует тугоплавкие карбиды, обладающие высокой твердостью.

Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза – железа. Коэффициент термического расширения при комнатной температуре сравнительно мал, с повышением температуры он возрастает.

Модули упругости титана невелики и обнаруживают существенную анизотропию. Модули упругости характеризуют способность материала упруго деформироваться при приложении к нему силы. Анизотропия заключается в различии свойств упругости в зависимости от направления действия силы. С повышением температуры до 350 °С модули упругости уменьшаются почти по линейному закону. Небольшое значение модулей упругости Ti – существенный его недостаток, т.к. в некоторых случаях для получения достаточно жестких конструкций приходится применять большие сечения изделий по сравнению с теми, которые следуют из условий прочности.

Титан имеет довольно высокое удельное электросопротивление, которое в зависимости от содержания примесей колеблется в пределах от 42·10 -8 до 80·10 -6 Ом·см. При температурах ниже 0,45 К он становится сверхпроводником.

Титан – парамагнитный металл. Обычно у парамагнитных веществ магнитная восприимчивость при нагревании уменьшается. Магнитная восприимчивость характеризует связь между намагниченностью вещества и магнитным полем в этом веществе. Данный материал составляет исключение из этого правила – его восприимчивость существенно увеличивается с температурой.

Физические и механические свойства

СвойствоТитан
Атомный номер22
Атомная масса47,00
Плотность при 20°С, г/cм 34,505
Температура плавления, °С1668
Температура кипения, °С3260
Скрытая теплота плавления, Дж/г358
Скрытая теплота испарения, кДж/г8,97
Теплота плавления, кДж/моль18,8
Теплота испарения, кДж/моль422,6
Молярный объем, см³/моль10,6
Удельная теплоемкость при 20°С, кДж/(кг·°С)0,54
Удельная теплопроводность при 20°С, Вт/(м·К)18,85
Коэффициент линейного термического расширения при 25°С, 10 -6 м/мК8,15
Удельное электросопротивление при 20°С, Ом·см·10 -645
Модуль нормальной упругости, гПа112
Модуль сдвига, гПа41
Коэффициент Пуассона0,32
Твердость, НВ130. 150
Цвет искрыОслепительно-белый длинный насыщенный пучок искр
Группа металловТугоплавкий, легкий металл

Химические свойства

СвойствоТитан
Ковалентный радиус:132 пм
Радиус иона:(+4e) 68 (+2e) 94 пм
Электроотрицательность (по Полингу):1,54
Электродный потенциал:– 1,63
Степени окисления:2, 3, 4

Марки титана и сплавов

Наиболее распространенными марками титана являются ВТ1-0, ВТ1-00, ВТ1-00св. Титан указанных марок называется техническим. Данные марки не содержат в своем составе легирующие элементы, только незначительное количество примесей. Содержание Ti в марке ВТ1-0 составляет приблизительно 99,24-99,7%, в ВТ1-00 – 99,58-99,9%, ВТ1-00св – 99,39-99,9%. ВТ1-0, ВТ1-00 поставляется в виде листов, плит, прутков и труб. Проволока чаще всего используется для различных сварочных целей и производится из марки ВТ1-00св.

В настоящее время известно довольно большое число серийных титановых сплавов, отличающихся по химическому составу, механическим и технологическим свойствам. Наиболее распространенные легирующие элементы в таких материалах: алюминий, ванадий, молибден, марганец, хром, кремний, олово, цирконий, железо.

Титановый сплав ВТ5 содержит 5% алюминия. Он отличается более высокими прочностными свойствами по сравнению с титаном, но его технологичность невелика. Сплав куется, прокатывается, штампуется и хорошо сваривается. Из марки ВТ5 получают титановые прутки (круги), проволоку и трубы, а также листы. Его применяют при изготовлении деталей, работающих при температуре до 400 °С.

Сплав титана ВТ5-1 помимо 5% алюминия содержит 2-3% олова. Олово улучшает его технологические свойства. Из марки ВТ5-1 изготавливают все виды полуфабрикатов, получаемых обработкой давлением: титановые плиты, а также листы, поковки, штамповки, профили, трубы и проволоку. Он предназначен для изготовления изделий, работающих в широком интервале температур: от криогенных (отрицательных) до + 450 °С.

Титановые сплавы ОТ4 и ОТ4-1 в качестве легирующих элементов содержат алюминий и марганец. Они обладают высокой технологической пластичностью (хорошо деформируются в горячем и холодном состоянии) и хорошо свариваются всеми видами сварки. Указанный материал идет, в основном, на изготовление титановых плит и листов, лент и полос, а также прутков и кругов, поковок, профилей и труб. Из титановых сплавов ОТ4 и ОТ4-1 изготовляют с применением сварки, штамповки и гибки детали, работающие до температуры 350 °С. Данные материалы имеют недостатки: 1) сравнительно невысокая прочность и жаропрочность; 2) большая склонность к водородной хрупкости. В сплаве ПТ3В марганец заменяется на ванадий.

Читать также:  Синий коричневый желто зеленый какой заземление

Титановый сплав ВТ20 разрабатывали как более прочный листовой материал по сравнению с ВТ5-1. Упрочнение марки ВТ20 обусловлено ее легированием, помимо алюминия, цирконием и небольшими количествами молибдена и ванадия. Технологическая пластичность сплава ВТ20 невысока из-за большого содержания алюминия, однако, он отличается высокой жаропрочностью. Данный материал хорошо сваривается, прочность сварного соединения равна прочности основного металла. Сплав предназначен для изготовления изделий, работающих длительное время при температурах до 500 °С.

Титановый сплав ВТ3-1 относится к системе Ti – Al – Cr – Mo – Fe – Si. Он обычно подвергается изотермическому отжигу. Такой отжиг обеспечивает наиболее высокую термическую стабильность и максимальную пластичность. Марка ВТ3-1 относится к числу наиболее освоенных в производстве сплавов. Он предназначен для длительной работы при 400 – 450 °С; это жаропрочный материал с довольно высокой длительной прочностью. Из него поставляют прутки (титановые круги), профили, плиты, поковки, штамповки.

Достоинства / недостатки

    Достоинства:
  • малая плотность (4500 кг/м 3 ) способствует уменьшению массы выпускаемых изделий;
  • высокая механическая прочность. Стоит отметить, что при повышенных температурах (250-500 °С) титановые сплавы по прочности превосходят высокопрочные сплавы алюминия и магния;
  • необычайно высокая коррозионная стойкость, обусловленная способностью Ti образовывать на поверхности тонкие (5-15 мкм) сплошные пленки оксида ТiO2, прочно связанные с массой металла;
  • удельная прочность (отношение прочности и плотности) лучших титановых сплавов достигает 30-35 и более, что почти вдвое превышает удельную прочность легированных сталей.
    Недостатки:
  • высокая стоимость производства, Ti значительно дороже железа, алюминия, меди, магния;
  • активное взаимодействие при высоких температурах, особенно в жидком состоянии, со всеми газами, составляющими атмосферу, в результате чего Ti и его сплавы можно плавить лишь в вакууме или в среде инертных газов;
  • трудности вовлечения в производство титановых отходов;
  • плохие антифрикционные свойства, обусловленные налипанием Ti на многие материалы; титан в паре с титаном вообще не может работать на трение;
  • высокая склонность Ti и многих его сплавов к водородной хрупкости и солевой коррозии;
  • плохая обрабатываемость резанием, аналогичная обрабатываемости нержавеющих сталей аустенитного класса;
  • большая химическая активность, склонность к росту зерна при высокой температуре и фазовые превращения при сварочном цикле вызывают трудности при сварке титана.

Области применения

Основная часть титана расходуется на нужды авиационной и ракетной техники и морского судостроения. Его, а также ферротитан используют как легирующую добавку к качественным сталям и как раскислитель. Технический титан идет на изготовление емкостей, химических реакторов, трубопроводов, арматуры, насосов, клапанов и других изделий, работающих в агрессивных средах. Из компактного титана изготавливают сетки и другие детали электровакуумных приборов, работающих при высоких температурах.

По использованию в качестве конструкционного материала Ti находится на 4-ом месте, уступая лишь Al, Fe и Mg. Алюминиды титана являются очень стойкими к окислению и жаропрочными, что в свою очередь определило их использование в авиации и автомобилестроении в качестве конструкционных материалов. Биологическая безвредность данного металла делает его превосходным материалом для пищевой промышленности и восстановительной хирургии.

Титан и его сплавы нашли широкое применение в технике ввиду своей высокой механической прочности, которая сохраняется при высоких температурах, коррозионной стойкости, жаропрочности, удельной прочности, малой плотности и прочих полезных свойств. Высокая стоимость данного металла и материалов на его основе во многих случаях компенсируется их большей работоспособностью, а в некоторых случаях они являются единственным сырьем, из которого можно изготовить оборудование или конструкции, способные работать в данных конкретных условиях.

Титановые сплавы играют большую роль в авиационной технике, где стремятся получить наиболее легкую конструкцию в сочетании с необходимой прочностью. Ti легок по сравнению с другими металлами, но в то же время может работать при высоких температурах. Из материалов на основе Ti изготавливают обшивку, детали крепления, силовой набор, детали шасси, различные агрегаты. Также данные материалы применяются в конструкциях авиационных реактивных двигателей. Это позволяет уменьшить их массу на 10-25%. Из титановых сплавов производят диски и лопатки компрессоров, детали воздухозаборников и направляющих в двигателях, различный крепеж.

Еще одной областью применения является ракетостроение. Ввиду кратковременной работы двигателей и быстрого прохождения плотных слоев атмосферы в ракетостроении в значительной мере снимаются проблемы усталостной прочности, статической выносливости и отчасти ползучести.

Технический титан из-за недостаточно высокой тепловой прочности не пригоден для применения в авиации, но благодаря исключительно высокому сопротивлению коррозии в ряде случаев незаменим в химической промышленности и судостроении. Так его применяют при изготовлении компрессоров и насосов для перекачки таких агрессивных сред, как серная и соляная кислота и их соли, трубопроводов, запорной арматуры, автоклав, различного рода емкостей, фильтров и т. п. Только Ti обладает коррозионной стойкостью в таких средах, как влажный хлор, водные и кислые растворы хлора, поэтому из данного металла изготовляют оборудование для хлорной промышленности. Также из него делают теплообменники, работающие в коррозионно активных средах, например в азотной кислоте (не дымящей). В судостроении титан используется для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На данный материал не налипают ракушки, которые резко повышают сопротивление судна при его движении.

Читать также:  Нагартованный алюминий что это

Титановые сплавы перспективны для использования во многих других применениях, но их распространение в технике сдерживается высокой стоимостью и недостаточной распространенностью данного металла.

Соединения титана также получили широкое применение в различных отраслях промышленности. Карбид (TiC) обладает высокой твердостью и применяется в производстве режущих инструментов и абразивных материалов. Белый диоксид (TiO2) используется в красках (например, титановые белила), а также при производстве бумаги и пластика. Титанорганические соединения (например, тетрабутоксититан) применяются в качестве катализатора и отвердителя в химической и лакокрасочной промышленности. Неорганические соединения Ti применяются в химической электронной, стекловолоконной промышленности в качестве добавки. Диборид (TiB2)- важный компонент сверхтвердых материалов для обработки металлов. Нитрид (TiN) применяется для покрытия инструментов.

Для каждого металла присущи определенные физические и химические свойства. Именно они определяют их удельный вес и плотность. Так, чистое золото – металл, обладающий повышенной тяжестью и не менее высокой плотностью – 19,32 г/см3. Этот показатель ставит золото на седьмое место среди всех металлов.

Разные системы применяют отличные единицы измерения: СИ = Н/М3, МКСС = 1 кг/м3, СГС = 1 дин/см3. Кроме этого удельный вес золота выражается в граммах на один кубический сантиметр. Это внесистемная единица измерения.

Физические свойства

Благородный металл обладает следующими физическими характеристиками:

  • повышенной прочностью;
  • тепло- и электропроводностью;
  • пластичностью;
  • ярким характерным блеском.

Плотность титана и алюминияОсновная особенность золота – его инертность. Благодаря ей, металл получил призвание благородного. Инертность препятствует окислению, поэтому золотые ювелирные украшения столетиями сохраняют свой первоначальный вид.

Пожалуй, единственным недостатком золота является его мягкость. Она компенсируется за счет добавления в сплавы различных примесей. За счет нее золото становится более твердым, но, вместе с тем, изменяются его основные характеристики: температура плавления и плотность.

Кроме мягкости, золото обладает повышенной тяжестью. Для расчета веса одного куба золота разработаны специальные формулы и таблицы, где представлены такие же показатели для разных металлов.

Благодаря тяжелому удельному весу добыча золота существенно облегчается за счет возможности отмывать крупицы металла от более меньших по массе крупиц песка и глины, которые содержатся в воде.

Показатели удельного веса других металлов

Удельный вес – показатель, являющийся неотъемлемой характеристикой и других металлов.

На удельный вес серебра влияет проба сплава. При добавлении в него других металлов (медь, никель) удельный вес и плотность теряются. Так, плотность меди составляет 8,93 г/см3, никеля – 8,91 г/см3. Все значения рассчитываются по формулам.

Серебро – такой же благородный металл, как и золото. Его удельный вес составляет 10,5 г/см3. Плавится оно при температуре 960 градусов. Основными физическими характеристиками серебра являются:

  • устойчивость к коррозии;
  • низкая сопротивляемость;
  • повышенная светоотражаемость.

Несмотря на природную мягкость, серебро обладает высокой плотностью и удельным весом.

Плотность титана и алюминияТитан – цветной металл бело-серебристого оттенка. Он обладает высокой прочностью, хоть и легкий на вес. Так, он в 12 раз прочнее алюминия и в 4 раза – меди и железа. По степени нахождения в земной коре титану отводится четвертое место среди остальных.

Низкий удельный вес титана – 4,505 г/см3 более соответствует щелочным металлам. На его поверхности образуется оксидная пленка, которая препятствует образованию коррозии.

Цинк – также цветной металл бело-синеватого оттенка. Обладает средней твердостью и начальной температурой плавления 419 градусов. Под воздействием температуры 913 градусов этот металл приобретает парообразное состояние. У цинка удельный вес составляет 7,13 г/см3.

Обычная температура делает цинк хрупким, но ее повышение до 100 градусов превращает металл в гибкий и пластичный. При взаимодействии с воздухом, на поверхности цинка образуется пленка из оксида.

Цвет свинца – грязно-серый, но это не влияет на природный блеск металла. Однако сияние довольно быстро прекращается за счет образования на поверхности свинца оксидной пленки. Свинцовый сплав обладает повышенным удельным весом – 11,337 г/см3. По этому показателю он превышает цинк, алюминий, железо и некоторые другие металлы. Несмотря на высокий показатель плотности, свинец – очень мягкий металл.

В таблице приведены значения удельного веса и температура плавления других металлов.

Наименование металлаТемпература плавления, °CУдельный вес, г/куб.см
Цинк419.57.13
Алюминий6592.69808
Свинец327.411.337
Олово231.97.29
Медь10838.96
Титан16684.505
Никель14558.91
Магний6501.74
Ванадий19006.11
Вольфрам342219.3
Хром17657.19
Молибден262210.22
Серебро100010.5
Тантал326916.65
Железо15357.85
Золото109519.32
Платина176021.45

Металлы, похожие с золотом по удельному весу

Схожей к золоту плотностью обладают и некоторые другие металлы. В частности, вольфрам и уран. Уран не смогут выдать за благородный золотой металл по следующим основным причинам:

  • высокая радиоактивность;
  • труднодоступность.

У фальсификаторов больше возможностей при работе с вольфрамом. Но этот металл существенно отличается от золота по цвету и твердости. Фальшивомонетчики несмотря на это нашли выход. Вольфрамовые слитки они покрывают расплавленным золотом.

Кроме этого, вольфрам часто используется и при производстве позолоченных украшений. По внешнему виду они очень схожи с настоящими золотыми изделиями, однако стоимость и износостойкость отличают их от золотых драгоценностей.

Нередко в продаже можно встретить золотые ювелирные украшения, имеющие необычные цвета. Зачастую – это обыкновенные напыления. Если изделие выполнено из сплава, то цена его будет гораздо выше. Например, бывает золото синего, розового, черного, фиолетового и других оттенков. Они получаются за счет включения в лигатуру прочих соединений.

Оцените статью
Добавить комментарий

Adblock detector