Первичная и вторичная обмотка трансформатора это

Первичная и вторичная обмотка трансформатора этоНоминальным первичным напряжением трансформатора называется такое напряжение, которое, необходимо подвести к его первичной обмотке, чтобы на зажимах разомкнутой вторичной обмотки получить вторичное номинальное напряжение, указанное в паспорте трансформатора.

Номинальным вторичным напряжением называют напряжение, которое устанавливается на зажимах вторичной обмотки при холостом ходе трансформатора (к зажимам первичной обмотки подведено напряжение, а вторичная обмотка разомкнута) и при подведении к первичной обмотке номинального первичного напряжения.

Напряжение на вторичной обмотке при нагрузке изменяется, так как ток нагрузки создает падение напряжения на активном и индуктивном сопротивлениях обмотки. Это изменение вторичного напряжения зависит не только от величины тока и сопротивлений обмотки, но и от коэффициента мощности нагрузки (рис. 1). Если трансформатор нагружен чисто активной мощностью (рис. 1, а), то напряжение по сравнению с другими вариантами меняется в меньших пределах.

На векторной диаграмме Е2 — ЭДС. во вторичной обмотке трансформатора. Вектор вторичного напряжения будет равен геометрической разности:

Первичная и вторичная обмотка трансформатора это

где I2 — вектор тока во вторичной обмотке; X тр и R тр — соответственно индуктивное и активное сопротивления вторичной обмотки трансформатора.

При индуктивной нагрузке и при той же самой величине тока напряжение снижается в большей степени (рис. 1,б). Это связано с тем, что вектор I2 х X тр отстающий от тока на 90°, в этом случае более круто повернут навстречу вектору Е2 , чем в предыдущем. При емкостной нагрузке увеличение тока нагрузки вызывает повышение напряжения на обмотке трансформатора (рис. 2, в). В этом случае вектор I2 х X тр по длине равный аналогичному вектору в первых двух случаях и также отстающий от тока на 90°, благодаря емкостному характеру этого тока оказывается повернутым вдоль вектора Е2 , и увеличивает длину U2 по сравнению с Е2 .

Первичная и вторичная обмотка трансформатора это

Рис. 1. Изменение вторичного напряжения трансформатора U2 в зависимости от коэффициента мощности нагрузки (угла φ): а — при активной нагрузке; б — при индуктивной нагрузке; в — при емкостной нагрузке; Е2 — ЭДС. во вторичной обмотке трансформатора; I2 — ток во вторичной обмотке (ток нагрузки); I0 — намагничивающий ток трансформатора; Ф — магнитный поток в сердечнике трансформатора; Rтр Xтр. — активное и индуктивное сопротивления вторичной обмотки.

В процессе эксплуатации необходимо регулировать величину напряжения на обмотке трансформатора. Это достигается изменением числа витков обмотки высокого напряжения. Меняя число витков этой обмотки, включенных в цепь высокого напряжения, можно менять коэффициент трансформации в пределах от ±5 до ±7,5% номинального значения.

Схема отводов от обмоток с простым переключением представлена на рисунке 2. В соответствии с этими отводами в паспорте указано минимальное высокое напряжение, номинальное и максимальное. Если, например, номинальное вторичное напряжение трансформатора равно 10000 В, то напряжение максимальное 1,05 U н = 10500 В, а напряжение минимальное 0,95 U н = 9500 В.

Для номинального напряжения 6000 В имеем соответственно 6300 и 5700 В. Число витков обмотки высшего напряжения изменяют переключателем, контакты которого находится внутри трансформатора, а рукоятка выведена на его крышку.

Обычно для трансформаторов, которые устанавливаются вблизи понизительной подстанции 35/10 кВ или повышающей 0,4/10 кВ, коэффициент трансформации принимают равным 1 ,05х K н , то есть ставят переключатель отводов в положение +5%. Если потребительская подстанция удалена от районной, в линии электропередачи возникает значительная потеря напряжения, поэтому переключатель ставят в положение -5%. Трансформатор в средней точке линии электропередачи устанавливают на номинальный коэффициент трансформации (рис.3).

Первичная и вторичная обмотка трансформатора это

Рис. 2. Схема отводов от части витков для измерения коэффициента трансформации на ±5%

Первичная и вторичная обмотка трансформатора это

Рис. 3. Установка переключателя витков трансформатора в зависимости от удаления потребительской трансформаторной подстанции от питающей районной подстанции.

В настоящее время промышленность освоила выпуск силовых трансформаторов поной шкалы мощностей 25, 40, 63, 100, 160, 250, 400 кВА и т. д. Для регулирования напряжения новые трансформаторы снабжены устройствами ПБВ пли РПН. ПБВ означает: переключение обмоток без возбуждения, то есть при выключенном трансформаторе.

Отпайки от обмоток позволяют посредством их переключения менять напряжение в пределах от -5 до +5% через каждые 2,5%. РПН означает: регулирование напряжения под нагрузкой (автоматическое). Оно позволяет регулировать напряжение в пределах от—7,5 до+7,5% шестью ступенями, или через каждые 2,5%. Такими устройствами могут обеспечиваться трансформаторы от 63 кВА и выше. Обозначение трансформатора с таким устройством — ТМН, ТСМАН.

Трехфазные трансформаторы ТМ и ТМН для трансформации энергии с 20 и 35 кВ на 0,4 кВ имеют мощности 100, 160, 250, 400 и 630 кВА.

Студенческий блог для электромеханика. Обучение и практика, новости науки и техники. В помощь студентам и специалистам

24.05.2013

Трансформатор — статический (без подвижных частей) электромагнитный аппарат, предназначенный для повышения или понижения напряжения переменного тока.

Принципиальная схема трансформатора приведена на рис. 1.

Первичная и вторичная обмотка трансформатора это

Основные части трансформатора: замкнутый стальной сердечник 1 и размещенные на этом сердечнике обмотки 2 и 3. Обмотки изолированы от стального сердечника и друг от друга, т. е. обмотки электрически не связаны между собой.

Читать также:  Станок для клейки кромки пвх

Сердечники трансформаторов набирают из листов специальной так называемой трансформаторной стали толщиной 0,35 или 0,5 мм.

Листы стали изолируют друг от друга специальной бумагой или лаковой изоляцией.

Трансформаторная сталь имеет повышенное по сравнению с обычной сталью электрическое сопротивление, способствующее, так же как и наличие прокладок и лака, уменьшению вихревых токов, индуктируемых в сердечнике, и связанных с ними потерь.

В трансформаторной стали потери, связанные с гистерезисом (перемагничиванием), меньше, чем в других сортах стали.

Обмотка трансформатора, к которой подводится электрическая энергия, называется первичной обмоткой, другая, к которой присоединяются приемники энергии, — вторичной обмоткой.

Соответственно все электрические величины (мощность, напряжение, ток, сопротивление и т. д.), относящиеся к электрической цепи первичной обмотки, называются первичными, а относящиеся ко вторичной обмотке, — вторичными.

Обмотка с более высоким напряжением называется обмоткой высшего напряжения (в. н.), обмотка, присоединенная к сети с меньшим напряжением, называется обмоткой низшего напряжения (н.н.).

Если вторичное напряжение меньше первичного, то трансформатор называется понижающим, а если больше — повышающим.

Режим работы трансформатора, при котором вторичная обмотка разомкнута, а к зажимам первичной подведено напряжение, называется холостым ходом.

Если к зажимам первичной обмотки подвести напряжение переменного тока U1, то в первичной обмотке потечет ток, который создаст переменный магнитный поток.

Преобладающая часть магнитных линий потока замкнется по стальному сердечнику, пронизывая все нитки первичной и вторичной обмоток. Эта часть магнитного потока называется основным, или рабочим, магнитным потоком Фт.

Другая часть потока, обычно гораздо меньшая, замыкается через воздух, пронизывая только витки первичной обмотки, и называется потоком рассеяния первичной обмотки Фs1. При разомкнутой вторичной цепи (цепи, питаемой от вторичной обмотки) ток в ней отсутствует и с ней не связано никакое магнитное поле.

При замыкании вторичной цепи в ней появляется ток; связанное с ним магнитное поле образует два потока: один в сердечнике, другой, замыкающийся через воздух, Фs2; таким образом, около вторичной обмотки также создается поток рассеяния.

Потоки рассеяния аналогичны магнитному потоку самоиндукции, который создает ток в любой катушке индуктивности и любом проводе. Эти потоки являются вредными.

Согласно закону электромагнитной индукции при изменении основного магнитного потока индуктируется э. д. с. в первичной обмотке Е1 и во вторичной Е2.

Так как первичная обмотка с числом витков w1 и вторичная обмотка с числом витков w2 пронизываются одним и тем же основным потоком, то очевидно, что в каждом витке обеих обмоток индуктируется одинаковая по величине э. д. с. е. Следовательно, Es1 = ew1 и Е2 = ew2, откуда

Первичная и вторичная обмотка трансформатора это

где К — коэффициент трансформации трансформатора.

Поток рассеяния в свою очередь индуктирует э. д. с. рассеяния в первичной обмотке Es1.

Следовательно, напряжение, приложенное к первичной обмотке трансформатора, U1 должно быть уравновешено падением напряжения в активном сопротивлении I1r1 первичной обмотки, э. д. с. Esl рассеяния и э. д. с. E1 основного потока.

При холостом ходе, т. е. при разомкнутой вторичной цепи, Es1 и I1r1 очень малы и можно считать, что э. д. с. Е1, индуктируемая в первичной обмотке, полностью уравновешивает подведенное напряжение U1.

При разомкнутой вторичной цепи э. д. с. Е2 электрического тока не вызывает, но если мы замкнем вторичную обмотку, т. е. присоединим к ней приемники электроэнергии, то под действием вторичной э. д. с. по вторичной цепи потечет ток, подводимая к трансформатору первичная мощность преобразовывается во вторичную, где используется для приемников электроэнергии (электродвигателей, электрических ламп и т. д.).

Если не учитывать потерь, можно считать, что подводимая мощность E1I1 приблизительно равна вторичной мощности Е2I2 (I1 и I2 — первичный и вторичный токи трансформатора), т. е.

Первичная и вторичная обмотка трансформатора это

т. е. при трансформации первичный и вторичный токи приблизительно обратно пропорциональны числам витков соответствующих обмоток; э. д. с. первичной и вторичной обмоток прямо пропорциональны числам витков соответствующих обмоток.

Вторичный ток I2, проходя в обмотке, создает ампер-витки I2w2, действующие в той же магнитной цепи трансформатора (сердечнике), что и ампер-витки первичной обмотки. Следовательно, при нагрузке основной магнитный поток (сцепленный с первичной и вторичной обмотками) будет определяться совместным действием ампер-витков l1w1 первичной и ампер-витков I2w2 вторичной обмоток.

Согласно закону Ленца индуктированный во вторичной обмотке ток направлен таким образом, что препятствует изменению сцепленного с ним магнитного потока. Изменение магнитного потока вызывается первичными ампер-витками l1w1. Следовательно, вторичный ток должен быть такого направления, чтобы создаваемые ими ампер-витки действовали против ампер-витков первичной обмотки.

Уменьшение основного магнитного потока из-за размагничивающего действия вторичных ампер-витков вызовет уменьшение индуктированной им э. д. с. Е1 в первичной обмотке. Так как напряжение, приложенное к зажимам первичной обмотки U1, остается постоянным, то при уменьшении Е1 оно не уравновешивает напряжения U1, поэтому ток увеличивается до величины, при которой восстанавливается равенство напряжения U1 и э. д. с. Е1. При этом основной магнитный поток должен практически сохранять величину, равную величине основного потока при холостом ходе.

Читать также:  Шиномонтаж своими руками чертеж как сделать клюшку

Действительно, при всех нагрузках трансформатора напряжение сети U1 должно уравновешиваться э. д. с. Е1 (падением напряжения в первичной обмотке пренебрегаем). Для этого необходимо, чтобы основной магнитный поток Фт оставался неизменным, т. е. постоянным при любой нагрузке трансформатора. Ток I1 в первичной обмотке должен быть таким, чтобы компенсировать влияние ампер-витков, создаваемых током I2 во вторичной обмотке. Напряжения на зажимах вторичной обмотки всегда меньше э. д. с. Е2 вследствие падения напряжения в активном и реактивном сопротивлениях вторичной обмотки.

Для трансформации трехфазного тока применяют трехфазные трансформаторы (трехстержневые), или групповые, которые составляются из трех однофазных.

Создателем первой конструкции трехфазного трансформатора является М. О. Доливо-Добровольский. Ученый применил его при сооружении в 1891 г. первой линии электропередачи трехфазного тока, по тому времени самой большой в мире по мощности и протяженности, осуществленной на расстоянии 178 км при напряжении до 30 000 в.

Трехстержневые трехфазные трансформаторы имеют общую магнитную цепь для всех трех фаз, состоящую из трех вертикальных стержней и двух горизонтальных, связывающих вертикальные стержни (рис. 2). Каждый вертикальный стержень 1, 2 и 3 с двумя обмотками I и II представляет собой однофазный трансформатор. Одна из обмоток является первичной,а другая — вторичной. Процессы, происходящие в каждой фазе трехфазного трансформатора, не отличаются от процессов в однофазном трансформаторе.

Первичная и вторичная обмотка трансформатора это

При этом в любой момент времени основной магнитный поток каждой фазы равен алгебраической сумме магнитных потоков двух других фаз.

Первичные, а также вторичные обмотки могут соединяться между собой звездой:

Первичная и вторичная обмотка трансформатора это

Первичная и вторичная обмотка трансформатора это

Первичная и вторичная обмотка трансформатора это

Первичная и вторичная обмотка трансформатора это

При передаче энергии из первичной обмотки трансформатора во вторичную часть мощности расходуется: на нагревание стального сердечника (гистерезис и вихревые токи), на нагревание первичной и вторичной обмоток (тепло Ленца).

Мощность, расходуемая на нагревание стального сердечника, называется потерями в стали и обозначается Рст.

Мощность, расходуемая на нагревание обмоток, называется потерями в меди и обозначается Рм.

Отношение мощности Р2, отдаваемой вторичной обмоткой потребителям тока (вторичная мощность), к мощности Р1 подводимой к первичной обмотке (первичная мощность), называется коэффициентом полезного действия(к. п. д.) трансформатора:

Первичная и вторичная обмотка трансформатора это

Первичная и вторичная обмотка трансформатора это

— мощность, отдаваемая трансформатором.

Коэффициенты полезного действия трансформаторов достигают весьма высоких значений. К. п. д. некоторых мощных трансформаторов составляет 98—99%.

Трансформаторы, обычно применяемые в береговых установках, погружают в бак со специальным трансформаторным маслом. Масло имеет большую теплоемкость, чем воздух, лучше отводит теплоту и является хорошим изоляционным материалом. Масло повышает электрическую прочность изоляции обмоток трансформатора. Поэтому масляные трансформаторы имеют меньшие габариты, чем воздушные той же мощности и с таким же напряжением. Стенки бака для лучшей теплоотдачи изготовляются из волнистого железа; иногда к баку пристраивается специальный радиатор.

Трансформатор, имеющий только одну обмотку, часть которой является общей для первичной и вторичной цепи, называется автотрансформатором (рис. 3, б).

Первичная и вторичная обмотка трансформатора это

Первичная обмотка (рис. 3, а) — витки w1 (участок обмотки 1—3), а вторичная — витки w2 (участок обмотки 1′ — 2′).

В общей части обмотки 1—2 ток равен разности I2 — I1, так как в автотрансформаторе вторичная обмотка совмещена с первичной.

Первичная и вторичная обмотка трансформатора это

называется коэффициентом трансформации автотрансформатора.

Преимуществами автотрансформатора (по сравнению с трансформатором) являются уменьшение сечения общей части обмотки, больший к. п. д. и меньший вес.

Наряду с указанными достоинствами автотрансформатор имеет существенный недостаток, а именно: возможность проникновения высокого напряжения в сеть низкого напряжения, так как первичные обмотки имеют электрическое соединение; поэтому автотрансформаторы применяются главным образом в установках низкого напряжения.

Трансформаторы, предназначенные для береговых и общепромышленных установок, отличаются от судовых. Обычно трансформаторы мощностью свыше 10 кВА, применяемые в береговых установках, погружают в бак, наполненный специальным трансформаторным маслом.

Для установки на судах отечественная промышленность выпускает специальные типы судовых трансформаторов — однофазные и трехфазные. Все судовые трансформаторы имеют естественное воздушное охлаждение. Масляные трансформаторы, несмотря на их преимущества, на судах не применяют, так как масло обладает горючестью и может выплескиваться при качке.

Однофазные судовые трансформаторы выпускаются мощностью до 10,5 кВА, а трехфазные — до 50 ква.

Первичное напряжение их равно 400, 230 и 133 в (последнее только для однофазных трансформаторов), а вторичное — 230, 133, 115 и 25 в.

Для возможности регулирования вторичного напряжения первичная обмотка трансформатора имеет несколько выводов. У трансформаторов для номинального первичного напряжения 380 в эти выводы соответствуют напряжению сети 400, 390, 380 и 370 в, а у трансформатора на 220 в — 230, 225, 220 и 215 в.

Если при номинальном напряжении первичной сети к ней будет подключена более высокая ступень напряжения первичной обмотки (например 400 или 390 в при номинале 380 в), то на вторичной стороне трансформатора напряжение будет ниже номинального. При подключении на первичной стороне более низкой ступени, чем номинальное напряжение, на вторичной стороне получим напряжение выше номинального.

Читать также:  Как подключить свет с датчиком движения

Судовые трансформаторы выпускаются для установки на открытых палубах и для установки в закрытых помещениях.

Изоляция их рассчитана на длительное пребывание в условиях большой влажности окружающей среды.

Все судовые трансформаторы выпускаются в гладких, закрытых металлических кожухах, снабженных лапами с отверстиями для крепления трансформаторов болтами к палубе или переборкам.

Тема: как сделать, намотать, перемотать вторичную, выходную обмотку трансформатора под нужный ток и напряжение, её простой расчёт.

Первичная и вторичная обмотка трансформатора этоНапомню, что трансформатор – это электротехническое устройство, способное преобразовывать электрическую энергию через промежуточную среду в виде электромагнитного поля. Устройство трансформатора достаточно простое. Он состоит из магнитного сердечника (может иметь различные формы) на который наматываются витки изолированного провода. Классический вариант трансформатора содержит две обмотки: первичная (она же входная) и вторичная (она же выходная). В зависимости от материала магнитного сердечника, общей мощности трансформатора, нужных параметров (входное и выходное напряжение и сила тока) данное устройство содержит определённое количество витков и сечение обмоточного провода.

Первичные обмотки трансформаторов в большинстве своем рассчитаны на стандартное сетевое напряжение величиной 220 вольт (реже на 380 вольт, это трансформаторы используют в промышленной сфере). Одной из главных характеристик трансформатора является его мощность. Зная мощность данного устройства и имея первичную обмотку, рассчитанную на 220 вольт можно легко переделать любой трансформатор под свои нужды (если этой мощности вам будет хватать) намотав вторичную обмотку под нужное выходное напряжение и силу тока.

А как можно определить эту самую мощность трансформатора? По его сердечнику! Электрическая мощность трансформатора (в ваттах) равна квадрату площади (в сантиметрах) поперечного сечения той части магнитопровода, на которую наматывается провод.

Первичная и вторичная обмотка трансформатора это

Напомню, что электрическая мощность равна произведению напряжения на силу тока. То есть, если мы узнали мощность трансформатора, с которой он может работать мы можем вычислить номинальную силу тока, что может выдавать вторичная обмотка (зная величину напряжения).

К примеру, вы решили сделать себе блок питания относительно небольшой мощности. Берём от старой, ненужной электротехники (если таковая у вас имеется в доме, гараже) понижающий силовой трансформатор (с железным магнитопроводом) или его покупаем. Допустим, по сердечнику вы определили, что трансформатор имеет мощность около 120 ватт. Это значит, что при напряжении в 12 вольт (на вторичной обмотке) он может обеспечивать силу тока величиной до 10 ампер (мощность разделили на напряжение и получили силу тока). В действительности же нужно учитывать, что у малогабаритных трансформаторов КПД равен около 80%, значит и максимальный выходной ток будет чуть меньше, чем 10 ампер (исходя из данного примера).

Первичная и вторичная обмотка трансформатора этоТрансформатор, который вы нашли, приобрели, оказался рассчитанный (его вторичная, выходная обмотка) на другое напряжение, не то, которое нужно именно вам. Не беда! Мы его аккуратно разбираем, разматываем старую вторичную обмотку и наматываем новую. Если диаметр провода может обеспечить вам нужный ток, то просто перематываем старую вторичную обмотку под нужное напряжение. От количества витков зависит напряжение (чем больше витков, тем выше напряжение на выходе). От сечения провода обмотки зависит сила тока (чем больше сечение, тем больший ток провод может пропустить через себя, не перегреваясь).

У различной мощности трансформаторов количество витков на 1 вольт будет также различное. Чем больше мощность, тем меньше нужно наматывать провода для получения 1 вольта (а в целом нужной величины напряжения). Сечение провода в значительной степени зависит от той плотности тока, которую вы можете допустить. Если площадь намотки велика, то и охлаждаться она будет лучше, следовательно, и плотность тока можно выбрать больше. Когда же обмотка намотана кучно, то лучше плотность тока брать меньше. В среднем плотность тока равна 2 А/мм2. При этой плотности диаметр провода (без учета изоляции) можно рассчитать по формуле:

Первичная и вторичная обмотка трансформатора это

Количество витков вторичной обмотки проще будет определить практическим путём. Для этого, на скорую руку, на трансформатор мотаем, допустим, 20 витков. Подаем на первичную обмотку питание. Далее измеряем напряжение на вторичной обмотке (этих самых 20 витках), после чего эти 20 витков делим на измеренное напряжение, и получаем количество витков, которые будут выдавать нам 1 вольт. Ну, а потом, чтобы узнать общее количество витков вторичной обмотки, мы напряжение вторичной обмотки умножаем на количество витков на один вольт. К примеру, 1 вольт мы получим при намотке 10 витков, следовательно, мы 10 умножаем на 12 вольт (которые мы хотим получить на выходе трансформатора). В итоге наша вторичная обмотка должна содержать 120 витков.

Оставить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *