Никель и его сплавы

Обработка металла известна человечеству несколько тысяч лет. Наряду с однородными материалами начали появляться смеси с различными характеристиками. С развитием технологического прогресса человек открывал всё больше и больше соединений металлов. Наиболее известными являются сплавы на основе никеля. Они используются в различных направлениях промышленности благодаря своим характеристиками и внешнему виду.

Применение в чистом виде

Никель представляет собой металл серебристого цвета. Он обладает высокими показателями прочности и пластичности. Обладает ферромагнитными свойствами, хорошо сваривается, куется и штампуется. Устойчив к воздействию кислот и щелочей. Не окислятся на открытом воздухе благодаря оксидной плёнке.

Области применения материала в чистом виде:

  1. Используется в качестве защитного покрытия для других металлических поверхностей. При этом защитный слой наносится методами плакирования или гальванопластики. Защищает другие металлы от коррозийных процессов.
  2. Из металла изготавливаются емкости для хранения и транспортировки химических реагентов, кислот, щелочей.
  3. Его часто используют в качестве катализатора. Связано это с каталитическими свойствами материала, которые схожи с палладием. Однако этот металл стоит гораздо дешевле.
  4. Изготовление прерывателей нейтронных пучков. Благодаря этому металл получил распространение в ядерной физике.

Помимо использования в пищевой и химической промышленности, чистый материал применяется при изготовлении щелочных аккумуляторов.

Особенности

Никель и сплавы на его основе обладают определёнными особенностями и характеристиками. Их важно учитывать перед применением их в промышленности.

Структура и состав

Структура сплавов на основе никеля изменяется в зависимости от того, какие компоненты входят в их состав. От этого также зависят характеристики готового материала. Этот материал представляет собой металл серебристого цвета, который содержится в земной коре, воде и воздухе. В природе можно найти не только однородный металл, но и смеси на его основе. Связано это с тем, что он отлично сочетается с другими материалами. Часто встречающиеся компоненты в составе смесей — железо, молибден, медь, хром.

Свойства и характеристики

Физические и химические свойства материала помогают определить, где его можно использовать и как он будет изменяться при определённых этапах обработки. Характеристики:

  1. Плотность — 8800 кг/м3.
  2. Температура плавления — 1455 градусов по Цельсию.
  3. Температура кипения — около 2900 градусов.
  4. Максимальная прочность на растяжение — 9000 МПа.
  5. Теплопроводность — 90,9 Вт/(м*К).
  6. Сопротивление электричеству — 0,0684 мкОм*м.

Благодаря своим характеристикам никель и смеси на его основе применяются в разных направлениях промышленности. Они хорошо поддаются обработке на промышленном оборудовании, что расширяет их область применения.

Марки

По государственному документу ГОСТ 849-2008 обозначено 7 марок никеля. К ним относятся H0, H1,2,3,4, Н1Ау и Н1у. Состав марок представляет собой содержание основного вещества до 99,9%, незначительное количество кобальта и сторонних примесей.

Сплавы

Никель является основой многих сплавов. Стоит подробнее разобраться с самыми популярными соединениями на основе этого металла.

С медью

Популярнейшим соединением считается никель и медь. В итоге получается материал, который не похож по своим характеристикам на исходный металл. При изготовлении металлических смесей можно выделить 3 популярных соединения:

  1. Монель — материал, в котором содержится примерно 67% никеля. Имеет высокий показатель прочности. Его можно сравнить с разными видами сталей. Используется в авиастроении, судостроении, а также изготовлении электроинструментов. Найти детали из монели можно в музыкальных инструментах.
  2. Мельхиор — известный сплав, основным компонентом которого является медь. Никеля же в составе может содержаться до 30%. Используется при изготовлении ювелирных украшений, статуэток, столовых приборов.
  3. Копель — смесь на 44% состоящая из никеля. Из него изготавливается проволока, из которой делают компенсационные провода.

Существуют и другие смеси с добавлением цинка, которые обладают своими особенностями и характеристиками.

С хромом

Соединения хрома с никелем многим известно, как нихром. Особенность этого сплава — высокий показатель электрического сопротивления, высокая температура плавления. Также нихром отличается хорошей прочностью и теплоёмкостью. Отрасли применения:

  1. Изготовление деталей для приборов, работающих в агрессивных условиях окружающей среды.
  2. Производство нагревательных элементов и оборудования для термической обработки.
  3. Проволока из нихрома используется при изготовлении электропечей.
  4. Из этого сплава изготавливают нити испарения, использующиеся в электронных сигаретах.

Если нихром будет покрыт легирующих слоем на основе кремния, его можно использовать в химической промышленности. От дополнительного покрытия материал получает устойчивость к кислотам.

С молибденом и другими металлами

При соединении никеля с молибденом в состав добавляется хром. Процентное содержание основного металла достигает 77%. При этом молибдена в составе может содержаться до 9%. Остальное количество занимает хром. Особенность соединения — высокий показатель прочности и жёсткости.

Сплав с молибденом используется в медицине. Из него изготавливают мостовидные протезы. Сложно обрабатывается. Сделать отливки из такого материала практически невозможно. Однако благодаря своим характеристикам и низкой стоимости сплавы с молибденом имеют высокую популярность.

С железом

Подобная смесь называется инвар. Представляет собой соединение железа и никеля. Используют готовый материал при изготовлении деталей для механических часов.

Область применения

Чистый металл используется не так часто, как сплавы никеля. Области применения сплавов:

  1. Применяются в машиностроении, строительстве, изготовлении трубопроводов. Из этого металла изготавливаются массивные конструкции, которые защищены от образования ржавчины.
  2. Детали для оборудования, которое работает в условиях агрессивных сред. Сплавы устойчивы к воздействию кислот, коррозийных процессов, щелочей.
  3. Сплавы используют для изготовления газовых турбин.
  4. В быту изделия из сплавов никеля можно встретить в виде мебельной фурнитуры, кранов и смесителей.
  5. Никель входит в состав сплавов, которые используются при изготовлении белого золота.

На основе этого материала изготавливаются никель-кадмиевые аккумуляторы. Соединения металлов многообразны и благодаря этому их используют в различных направлениях промышленности.

Плюсы и минусы

Сплавы на основе никеля обладают положительными и отрицательными сторонами.

  1. Жаропрочные сплавы на никелевой основе обладают высокими показателями прочности и твердости.
  2. Коррозийная устойчивость.
  3. Высокая электропроводность.
  4. Хорошая свариваемость.
  5. Высокий показатель износоустойчивости.
  1. Поверхность материала уязвима к ударам. Могут появляться трещины и сколы.
  2. Если на сторонний металл нанесен защитный слой, то при длительном воздействии жидкостей он может смываться.

Благодаря своим характеристикам этот материал используется в качестве дешёвого аналога дорогим металлам.

Сплавы на основе никеля имеют большую популярность в промышленности. Характеристики материала изменяются в зависимости от используемых добавок к основному металлу.

СВОЙСТВА И ПРИМЕНЕНИЕ НИКЕЛЯ

Никель (Ni) — металл серебристо-белого цвета, достаточно твердый и вязкий, имеющий широкое применение и важное значение в технике. Он был открыт в 1751 г. Название элемента происходит от второй части названия минерала «купферникель»— фальшивая медь.

Никель состоит из смеси пяти изотопов с массовыми числами 58, 60, 61, 62, 64. Кроме того, получено шесть искусственных радиоактивных изотопов никеля с массовыми числами 56, 57, 59, 63, 66, 66. Ряд радиоактивных изотопов никеля находит практическое применение. Кристаллическая структура никеля — гранецентрированная. Физические и механические свойства никеля характеризуются следующими данными:

Плотность при 20°С, г/см3

Скрытая теплота, кал/г:

Коэффициент линейного расширения при 20—100°С, 1/град

Теплопроводность при 0—100°С, кал/(см·сек·град)

Удельное электросопротивление, ом· мм2/м

Модуль нормальной упругости, кГ/мм2

Модуль сдвига, кГ/мм2

Предел упругости отожженного никеля, кГ/мм2

Читать также:  Насосная станция с инжектором

Предел текучести никеля, кГ/мм2:

Временное сопротивление никеля, кГ/мм2:

Относительное удлинение никеля, %:

Твердость НВ никеля, кГ/мм2:

Ударная вязкость отожженного никеля. кГ/мм2 .

Предел усталости никеля на базе 10 7 циклов. кГ/мм2:

Никель обладает ценными химическими и механическими свойствами. Хорошая пластичность позволяет получать из него различные изделия методом деформации в холодном и горячем состоянии.

Никель является одним из самых активных катализаторов среди металлов.

Добавки никеля к другим металлам существенным образом изменяют их свойства и создают возможности для получения широкого ассортимента различных очень ценных материалов. Поэтому главной областью применения никеля являются различные сплавы. Известно более 3000 сплавов, в состав которых входит никель. Получение никелевых сплавов основано на различною рода взаимодействиях, в которые вступает никель с другими элементами.

Непрерывные твердые растворы с никелем дают марганец, железо, кобальт, медь, палладий, родий, иридий, платина. Ограниченные твердые растворы с никелем образуют бериллий, бор, углерод, магний, алюминий, кремний, фосфор, титан, ванадий, хром, цинк, галлий, германий, мышьяк, цирконий, ниобий, молибден, рутений, индий, олово, сурьма, лантан, тантал, вольфрам, рений, осмий, висмут и уран.

Различные соединения образуют с никелем водород, азот, кислород, сера, селен, теллур, фтор, хлор, бром и иод. Не взаимодействуют с никелем гелий, неон, аргон, криптон, ксенон, радон, литий, натрий, калий, рубидий, цезий, франций, кальций, стронций, барий и иридий.

Никель в чистом виде применяют в качестве антикоррозионных защитных покрытий, наносимых методом плакирования и гальванопластикой. Плакирование никелем применяют для предохранения от коррозии железа и нелегированных сталей путем получения двух- и трехслойного металла. Это значительно удешевляет стоимость изделий, изготовленных из такого металла взамен изделий из чистого никеля. Электролитические покрытия никелем наносят на алюминий, магний, цинк и чугун.

Из чистого никеля изготовляют также различные аппараты, приборы, котлы и тигли с высокой коррозионной стойкостью и постоянством физических свойств, а из никелевых материалов — резервуары и цистерны для хранения в них пищевых продуктов, химических реагентов, эфирных масел, для транспортирования щелочей и других химических и пищевых продуктов, для плавления едких щелочей.

Никелевые трубы применяют для изготовления конденсаторов в производстве водорода, для перекачки щелочей в химическом производстве. Никелевые химически стойкие инструменты широко используют в медицине и научно-исследовательской работе. Никель применяется для приборов радиолокации, телевидения, дистанционного управления процессами в атомной технике. Никелевые пластинки применяют в механических прерывателях нейтронного пучка для получения нейтронных импульсов с большой энергией.

Порошкообразный никель используют в каталитических процессах, в реакциях гидрогенизации непредельных углеводородов, циклических альдегидов, спиртов, ароматических углеводородов. Каталитические свойства никеля аналогичны таким же свойствам платины и палладия. Поэтому никель, как более дешевый материал, широко применяется взамен этих металлов в качестве катализатора при гидрогенизационных процессах.

На основе порошков чистого никеля изготовляют пористые фильтры для фильтрования газов, топлива и других продуктов в химической промышленности. Порошкообразный никель потребляют также в производстве никелевых сплавов и в качестве связки при изготовлении твердых и сверхтвердых материалов.

Никель применяют в качестве аккумуляторных электродов в щелочных аккумуляторах.

В сплавах никель участвует главным образом в сочетании с железом и кобальтом. Он является легирующим элементом в различных конструкционных сталях, а также в магнитных и немагнитных сплавах, сплавах с особыми физическими свойствами, нержавеющих и жаропрочных сталях. Значительно распространены сплавы на никелевой основе в сочетании с хромом, молибденом, алюминием, титаном, бериллием.

Большую группу сплавов представляют сплавы никеля на медной основе — типа монель, нейзильбер, латуни и бронзы. Широко применяетеся никель в чугунах.

Медноникелевый сплав монель, содержащий 68—70% Ni и 28—30% Сu, обладает весьма высокой коррозионной стойкостью в кислотах и щелочах, во влажной и морской атмосфере и поэтому используется в химической и электротехнической промышленности, в морском оборудовании, при производстве и хранении пищевых продуктов и в медицине. Его применяют также для (плакирования железа и стали.

Никель и сплавы на никелевой основе играют важную роль в конструкциях некоторых типов мощных атомных реакторов. Никелевые сплавы применяются з атомных реакторах в качестве защитных высокотемпературных оболочек для предохранения от коррозии урановых стержней.

Большое значение имеют сплавы типа инвар с низким коэффициентом расширения, а также сплавы типа инвар с добавкой кобальта (ковар). Никелевые литые жаропрочные сплавы находят применение в конструкциях стационарных газовых турбин и реактивных двигателей самолетов.

Сплавы на никелевой основе применяют для электротехнических целей, а также в качестве кислотостойких, жаростойких и жаропрочных материалов.

Для электротехнических целей используют проволоку из марганцовистого никеля марок НМц2,5 и НМц5 для свечей автомобильных, авиационных и тракторных двигателей; из сплавов алюмель и хромель Т для термопар; из сплава хромель К для компенсационных проводов.

Кислотостойкие никелевые сплавы. Материалы этой группы представляют собой сплавы на никелевой основе, легированные хромом, вольфрамом, молибденом, медью и другими элементами. Никелевые сплавы, легированные хромом и вольфрамом, являются стойкими в агрессивных окислительных средах, а cплавы, не содержащие хрома (никель — медь и никель — молибден), являются стойкими в агрессивных неокислительных средах. Для повышения коррозионной стойкости никелевые сплавы легируются кремнием, алюминием и другими элементами.

Сплав монель. Этот сплав относится к кислотостойким сплавам на никелевой основе, содержащим в качестве основного легирующего элемента медь. Он обладает очень высокой коррозионной стойкостью, высоким временным сопротивлением и хорошей пластичностью в холодном и горячем состояниях. Монель-металл практически не подвергается коррозии в сухом воздухе и дистиллированной воде, стоек против действия разбавленной серной кислоты, крепких щелочей, большинства органических кислот, сухих газов яри обычной температуре и морской воды. Химический состав его по ГОСТ 49(2—52 указан в табл. 350 и 351. Монель-металл находит широкое применение для изготовления изделий, от которых требуется высокая коррозионная стойкость и механическая прочность—в химической, судостроительной, медицинской, нефтяной, текстильной и других отраслях машине- и аппаратостроения.

Из монель-металла марки НМЖМц 28-2,5-11,5 изготовляют листы, полосы, ленты, прутки, проволоку, трубы.

Монель К представляет собой обычный монель-металл, легированный алюминием и упрочненный термической обработкой. Его применяют в тех случаях, когда требуется более высокая прочность, чем у обычного Монель-металл а: для клапанов насосов,

пружин и других деталей высокой прочности и высокой коррозионной стойкости. Не рекомендуется применять этот сплав для работы при температурах выше 315°С в средах, содержащих сернистые соединения. Из сплава изготовляют поковки, прутки, ленты, трубы.

Монель S по сравнению с обычным монель-металлом содержит повышенное количество кремния (3—5%). Его применяют для отливки деталей, от которых требуется высокая прочность, гидравлическая плотность, высокая химическая стойкость и хорошая сопротивляемость истиранию: седла клапанов, трущиеся детали газовых турбин и других машин.

Инконель — никелевый сплав, содержащий в качестве основных легирующих элементов хром и железо, применяется для деталей, работающих в окислительных средах и при высоких температурах. Не рекомендуется применять этот сплав для деталей, работающих при температурах выше 815°С в средах, содержащих сернистые соединения.

Большую группу кислотостойких никелевых сплавов составляют сплавы, в состав, которых в качестве одного из основных легирующих элехментов входит молибден.

Хастелой А (ЭИ460). Основными легирующими элементами в сплаве являются молибден и железо. Его применяют для деталей оборудования, работающих в соляной кислоте при температуре до 70°С, в разбавленной (до 50%) серной кислоте вплоть до кипения. Наилучшее сочетание коррозионной стойкости и вязкости сплава достигается после закалки с 1150—1175°С в воде или на воздухе. Не рекомендуется применять сплав в окислительных средах.

Читать также:  Колесный снегоход своими руками

Хастелой В (ЭИ461). Этот сплав обладает более высоким содержанием молибдена, чем хастелой А. Кроме того, в его состав входит ванадий. Сплав применяют для изготовления деталей, работающих в соляной кислоте всех концентраций, нагретой вплоть до температуры кипения, а также в других неокислительных кислотах и на воздухе при температурах до 760°С. Оптимальное сочетание свойств сплава достигается после закалки в воде или <на воздухе.

Хастелой С (ЭП375) — сплав на никелевой основе, в котором основными легирующими компонентами являются молибден, Хром, вольфрам и железо. Этот сплав предназначен для изготовления деталей оборудования, работающих при средних температурах в следующих окислительных средах: влажный хлор, гипохлориты, хлорное железо и хлорная медь, азотная и фосфорная кислоты, смеси соляной кислоты с серной кислотой при окислительных условиях, морская вода, уксусная и муравьиная кислоты и их соли. При работе на воздухе сплав может быть использован до 1090ЧС. Сплав не рекомендуется для работы ;в азотной кислоте при температуре выше ЖС.

Хастелой D — сплав на никелевой основе; в качестве главных легирующих элементов он содержит кремний и медь. Его применяют для получения деталей путем литья в землю или в кокиль, работающих с горячими растворами серной кислоты всех концентраций с температурой до 70°С. Не рекомендуется применять этот сплав для работы в окислительных средах. Из-за высокой твердости сплав с большим трудом обрабатывается резанием. Для улучшения обрабатываемости сплав подвергают отжигу при температурах 1050-1080 °С а затем медленно охлаждают

Ха стелой F — сплав, основными компонентами которого являются никель, железо, хром, молибден, таллий и ниобий. Из него изготовляют детали, которые работают в контакте с кислотами и щелочами в окислительно – восстановительных условиях. Он хорошо сопротивляется коррозии под напряжением в растворах хлоридов. Полуфабрикаты из этого сплава поставляют в виде листов, прутков и отливок.

Нионель — никелевый сплав, в котором основными компонентами являются никель, молибден, хром, железо, медь и титан. Сплав применяют для изготовления емкостей под хранение фосфорной и серной кислот, а также горячих растворов каустической соды.

Иллиум G — сплав никеля с хромом, легированный аллюминием, молибденом, железом, вольфрамом, медью. Сплав хорошо сопротивляется воздействию серной, фосфорной, азотной и органических кислот, смесей минеральных кислот и солей, а так- же морской воды, фтористых и сернистых соединений. Сплав используют в химическом машиностроении для высокопрочных литых деталей — для насосов и для оборудования вискозного производства. Не рекомендуется применять сплав для деталей, работающих в контакте с галогенами и их кислотами.

Жаропрочные никелевые сплавы

Сплавы никеля с хромом с присадкой других легирующих элементов — титана, алюминия, молибдена, вольфрама, ниобия, стронция и др. — широко используются в качестве жаропрочных деформируемых материалов. Эти сплавы применяются для изготовления наиболее напряженных деталей газотурбинных двигателей и других силовых установок. Свойства никелевых жаропрочных сплавов в сильной степени зависят от режима термической обработки.

Никелевые литейные жаропрочные сплавы имеют более высокие пределы длительной прочности, чем аналогичные сплавы в деформированном состоянии. Это связано с особенностями кристаллизации сплавов, сопровождающейся образованием карбидных и боридных фаз по границам зерен, затрудняющих развитие трещин по этим границам. Литейные сплавы подвергаются легированию в большей степени, чем деформируемые сплавы, так как в последних оно ограничено необходимостью применения горячей пластической деформации, которая весьма затрудняется при сильном легировании. Литейные сплавы обладают также большей технологичностью, чем деформируемые сплавы, особенно при изготовлении изделий сложной формы. Однако литейные сплавы имеют более низкую ударную вязкость, чем деформируемые сплавы. За счет улучшения качества слитка и применения прогрессивных методов горячей механической обработки разрыв между возможным температурным уровнем работоспособности жаропрочных сплавов в литом и деформированном состояниях значительно сокращен.

Сплавы марок ХН717ТЮ и ХН77ТЮР применяют для изготовления рабочих лопаток и дисков газовых турбин. В состаренном состоянии эти сплавы имеют более высокую прочность и твердость, но (пониженную пластичность и ударную вязкость. Они обладают высокими характеристиками жаропрочности до 750°С. При более высоких температурах надежная работа их сохраняется при пониженных нагрузках.

Сплавы ХН77ТЮ и ХН77ТЮР обладают высоким сопротивлением усталости и окислению и незначительным сопротивлением надрезу. При длительном нагревании перед закалкой поверхностные слои сплавов обедняю гея хромом, титаном и алюминием, поэтому при изготовлении из них лопаток газовых турбин обедненный слой необходимо удалять. Для обеспечения высоких жаропрочных и эксплуатационных свойств необходимо добиваться получения путем ковки и штамповки равномерных зерен металла диаметром 0,5—,1,0 мм.

Из сплавов марок ХН70ВМТЮ и ХН70МВТЮБ изготовляют рабочие лопатки газотурбинных двигателей, работающих при 800—850°С. После механической обработки детали подвергают термической обработке. (Нагревают детали в атмосфере аргона, а дополнительное старение проводят в обычной воздушной среде. После такой обработки детали становятся нечувствительными к надрезу.

Сплав ХН67МВТЮ предназначен для рабочих лопаток газовых турбин, работающих при температурах 770—850°С.

Жаростойкие деформируемые никелевые сплавы превосходят никель по сопротивлению окислению при высоких температурах. Они обладают высокой технологической пластичностью и хорошей свариваемостью. Жаростойкость никеля обычно повышается за счет добавок хрома. Никелевые сплавы с хромом (нихромы) содержат от 15 до 30% Сr. Кроме того, в состав никелевых жаростойких сплавов для повышения жаростойкости вводятся алюминий и другие легирующие элементы.

Никелевые деформируемые жаростойкие сплавы применяют для изготовления деталей, работающих при температурах 700—1100°C.

В качестве конструкционных жаростойких материалов применяются нихромы, которые наряду с высокой жаростойкостью обладают повышенной жаропрочностью. Жаропрочность этих сплавов повышают легированием тугоплавкими элементами, образующими стойкие карбиды или карбонитриды (ниобий, титан).

Деформируемые жаростойкие никелевые сплавы, обладающие удовлетворительной способностью к холодной деформации, пригодны для изготовления деталей из листа методом глубокой вытяжки и гибки.

Применение сплавов:

ХН78Т — жаровые трубы камер сгорания газовых турбин, работающих при 700— 900°С;

ХН75МБТЮ — жаровые трубы камер сгорания газовых турбин, форсажных камер реактивных двигателей, работающих пои 700—900°С;

ΧΗ60В — жаровые трубы камер сгорания турбин, форсажных камер, створок форсажных камер двигателей, работающих при 850—1000°С;

ХН70Ю и ХН60Ю—карманы смесителей жаровых труб, требующих жаростойкости до 1100°C.

Никель и его сплавыНикель и его сплавыНикель и его сплавыНикель и его сплавыНикель и его сплавы

§ 33. Никель и его сплавы

Никель плавится при 1455°С, обладает гранецентрированной кубической решеткой, при высоких температурах является парамагнитным материалом, ниже 360°С (точка Кюри) становится ферромагнитным. Главная особенность никеля состоит в его высокой стойкости в различных жидких и газовых средах до очень высоких температур. Это определяется как свойствами самого металла, так и защитным действием поверхностной окисной пленки. Особенности электронного строения никеля и отсутствие температурных превращений сделали его незаменимым материалом для сплавов с особыми магнитными свойствами.

Основная масса никеля расходуется на легирование сталей, которым он сообщает повышенную коррозионную стойкость, способность работать на воздухе при высоких температурах. Никель входит в состав сплавов на основе железа, обладающих высокой магнитной проницаемостью (пермендюры), большой магнитной индукцией и энергией (сплавы типа альнико для постоянных магнитов). Ввиду дефицитности и большой цены никеля непрерывно ведутся работы по замене и уменьшению его содержания в сплавах массового производства для того, чтобы высвободить этот металл для тех областей, где он совершенно незаменим.

Читать также:  Маслоотделитель для компрессора своими руками

Наиболее опасные примеси в никеле — кислород, сера и углерод. Диаграммы состояния кислород — никель и сера — никель характеризуются эвтектическими превращениями. И сера, и кислород в значительных количествах (несколько процентов) растворяются в жидком металле. Кристаллизация начинается с выпадения почти чистого никеля, а затем кристаллизуется эвтектика никель — сульфид никеля и никель — окись никеля. Эвтектика никель — сульфид никеля кристаллизуется при 644°С и появляется в структуре уже при 0,05% S. Примесь серы крайне опасна — вызывает "красноломкость" металла, которая делает невозможной горячую обработку давлением. Поэтому содержание серы в никеле не должно превышать 0,03 — 0,04%, а в лучших сортах металла эта примесь ограничена 0,001%. Сера попадает в металл из руды. Кроме того, она может появиться при использовании катодного никеля из-за остатков электролита, содержащего соли серной кислоты. Вредное действие кислорода выражается в охрупчивании металла и при низких температурах. Углерод хорошо растворяется в жидком никеле и при кристаллизации выпадает в виде частиц графита, появляющихся в ходе эвтектической реакции при 1318°С. Растворимость углерода в твердом никеле довольно велика (0,65%) при 1300°С, но она падает при снижении температуры. Поэтому примесь углерода ограничивается 0,1 — 0,25% для металла массового потребления и 0,01% для металла высокого качества. Кобальт, который всегда содержится в никеле, как естественная примесь, в большинстве случаев безвреден, так как входит в твердый раствор, не изменяя его свойств. Содержание кобальта в первичном никеле составляет 0,005 — 0,1% в зависимости от сорта металла.

Из никеля производят все виды деформированных полуфабрикатов. Горячую обработку его ведут при 1150 — 1250°С, отжиг — при 700 — 800°С. В отожженном состоянии никель имеет предел прочности 400 — 500 МПа, относительное удлинение 30 — 40%, НВ (70 — 90), после холодной деформации (70 — 80%) эти свойства составляют, соответственно 700 — 900 МПа, 2 — 4%, НВ (180 — 200).

Одним из наиболее распространенных коррозионно-стойких деформируемых сплавов на основе никеля является монель-металл НМЖМц-2,5-1,5, содержащий медь, железо, марганец в указанных в марке количествах. Монель-металл представляет твердый раствор на основе никеля, поэтому он хорошо поддается пластическому деформированию. Механические свойства монель-металла примерно совпадают со свойствами никеля, так же как и температура отжига, но горячая обработка производится при более низкой температуре (975 — 1150°С). Для работы в кипящих кислотах применяют сплавы никеля типа хастеллой (или нимо), содержащие около 20% Мо с добавками титана, ванадия, вольфрама (по 0,3 — 1,0%). Содержание углерода в этих сплавах ограничено 0,1%. Механические свойства хастеллоев определяются упрочнением твердого раствора на основе никеля и действием частиц промежуточных фаз на основе соединения Ni3Ti. Закалкой и старением предел прочности этих сплавов можно довести до 1200 МПа при НВ 360.

Термоэлектродные никелевые сплавы хромель и алюмель являются самыми массовыми материалами для изготовления термопар, измеряющих температуру до 1000°С. Хромель НХ9,5 — это двойной сплав никеля с 9,5% Сr, алюмель НМцАК2-2-1 четвертной сплав никеля с 2% Mn, 2% А1, 1% Si. Оба сплава являются твердыми растворами и хорошо обрабатываются на проволоку — основной вид полуфабрикатов. Главная сложность производства этих сплавов заключается в обеспечении равномерного состава по всему объему слитка и однородного структурного состояния в готовом полуфабрикате.

Никель служит основой сплавов для нагревательных элементов электропечей сопротивления. Эти сплавы называют нихромами, они содержат, кроме никеля, хром или хром и железо. Двойной нихром X20H80 (80% Ni, 20% Cr) представляет твердый раствор, его удельное электросопротивление при 20°С равно 1 мкОм·м и при 1000°С — 1,16 мкОм·м. Сплав может длительное время работать при температурах до 1000°С. Столь высокая стойкость объясняется защитным действием окисной пленки. Нихром X15H60 содержит, кроме никеля и хрома, 25% железа, введенного ради экономии никеля. Эти сплавы широко применяются в качестве нагревателей открытых электропечей, работающих без защиты на воздухе. Их выпускают в виде ленты и проволоки.

Нихромы послужили основой для создания высокожаропрочных и жаростойких сплавов. Жаропрочностью называется способность материала выдерживать механические нагрузки при высоких температурах. При этом обязательно учитывается время действия нагрузки, поскольку значение прочности при разном времени до разрушения, например за 10, 100 и 1000 ч могут различаться в несколько раз. Жаростойкостью называют способность материала противостоять физико-химическому действию среды при высокой температуре. Для работы на воздухе жаростойкость совпадает с сопротивлением окислению.

Нихромы обладают хорошей жаростойкостью, но недостаточной жаропрочностью. Так, сплав X20H80 имеет длительную прочность σ 800 100 всего 40 МПа. Повышение высокотемпературной длительной прочности достигается введением в сплавы нескольких компонентов, которые входят в твердый раствор и усложняют его. Кроме того, при содержаниях выше определенного предела они образуют химически прочные промежуточные фазы с переменной растворимостью в основном растворе — матрице. Это позволяет проводить закалку и старение сплавов, причем желательно, чтобы температура старения была близка к рабочей температуре, что уменьшает диффузионный массообмен между фазами в процессе работы.

Жаропрочные никелевые сплавы на основе никель- хромового раствора содержат добавки алюминия, титана, молибдена, вольфрама, ниобия, тантала (по 1 — 5%). В некоторые сплавы вводят бор (0,02%), существенно повышающий жаропрочность, по-видимому, в результате замедления диффузии основных компонентов по границам зерен. Разработаны деформируемые и литейные жаропрочные никелевые сплавы. Типичным деформируемым жаропрочным сплавом является ХН77ТЮР (старое обозначение ЭИ437Б), содержащий 77% Ni, 20% Сr, 2,5% Ti, 1% А1, 0,02% В и не более 0,06% С. В равновесном состоянии при 100 — 800°С сплав имеет двухфазную структуру. Матрица представляет твердый раствор всех легирующих элементов в никеле. Включения второй фазы являются твердым раствором двух очень термически устойчивых промежуточных фаз Ni3Ti и Ni3Al, который обозначается Ni3(Ti, А1). Сплав закаливают с 1060 — 1090°С и подвергают старению при 700°С. После такой термообработки он обладает при 800°С следующими свойствами: предел прочности 550 МПа, удлинение 15%, длительная прочность σ 800 100 = 200 МПа. Сплав ХН77ТЮР служит для производства поковок (диски и лопатки турбин). Литейный сплав ЖС6 содержит 12% Сr; 7% W; 5% Мо; 5% А1; 2,5% Ti; 0,15% С; остальное — никель. Он имеет многофазную структуру, состоящую из твердого раствора, сложных промежуточных фаз на основе Ni3(Ti, А1) и сложных карбидов. Сплав подвергается закалке на воздухе с 1200°С. При 800°С он имеет длительную прочность σ 800 100 = 350 МПа. Из сплава ЖС6 литьем по выплавленным моделям изготавливают лопатки газотурбинных авиационных двигателей.

В заключение уместно сказать о жаропрочных кобальтовых сплавах, способных работать при 900 — 1150°С. Эти сплавы очень дороги и используют их в исключительных случаях. Подобным отечественным сплавом является литейный сплав ЛK4, содержащий 28% Сr; 5% Мо; по 3% Fe и Ni; по 1% Si и Мn; 0,3% С; 0,01% В. При 1000°С сплав имеет длительную прочность σ 1000 100 = 60 ÷ 70 МПа.

Оставить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *