Металлы с которыми медь образует сплавы

Медь — металл красноватой окраски, имеющий ГЦК-решетку, плотность 8,86 г/см 3 , мягкий, пластичный, с очень высокой тепло- и электропроводностью (р = 1,6 • 10 8 Ом • м), по этим свойствам медь уступает только серебру. В основном применяется в качестве проводника электрического тока. Полиморфных превращений не имеет, легко поддается пластической деформации (прокатывается в лист, фольгу, проволоку, трубки), но плохо режется и поддается литью, имеет высокую стоимость. Механические свойства меди относительно низки (ств« 150 МПа), поэтому в чистом виде она практически не используется как конструкционный материал.

Общая характеристика сплавов меди. Сплавы меди содержат Zn, Sn, Al, Ni, Fe, Mn, Si, Be, Cr, Pb, P и другие легирующие элементы (в сумме до 50%). Сплавы, состоящие из меди и одного легирующего элемента, называются двойными, или простыми, содержащие несколько легирующих элементов — многокомпонентными, или сложными.

Со многими элементами медь образует твердые растворы замещения, в которых атомы легирующего элемента занимают места атомов меди в ГЦК-решетке. В меди в твердом состоянии неограниченно растворяется Ni, ограниченно — Zn (до 39%), Sn (до 15,8%), А1 (до 9,4%). При образовании твердого раствора с увеличением концентрации легирующего элемента растет механическая прочность (пластичность при этом снижается) и электросопротивление, уменьшается температурный коэффициент электросопротивления, может повыситься коррозионная стойкость.

При добавлении легирующего элемента свыше предела растворимости образуются соединения, в частности электронные, т. е. характеризующиеся определенной электронной концентрацией (отношением суммарного числа валентных электронов к числу атомов, которое может быть равно 3/2, 21/13 или 7/4). Этим соединениям условно приписывают формулы CuZn, Cu5Sn, Cu3iSng, Cu9A14, CuBe и др.

В многокомпонентных сплавах меди часто формируются более сложные интерметалл иды, которые имеют более высокую твердость, чем раствор на основе меди, но хрупки.

Механические свойства сплавов меди можно изменять в широких пределах с помощью холодной пластической деформации и последующего отжига. Холодная пластическая деформация увеличивает твердость и предел прочности по сравнению с медью в 1,5—3 раза. При этом одновременно происходит снижение пластичности. После холодной пластической деформации проводят рекристаллизационный отжиг при 600—700 °С, который позволяет частично или полностью восстановить исходные (до деформации) свойства.

Упрочняющей термической обработке (закалке и старению) большинство сплавов меди не подвергают, поскольку для однофазных сплавов эта обработка невозможна, для других же величина упрочнения незначительна. Для создания термически упрочняемых сплавов используют легирующие элементы, образующие с медью или между собой интерметаллические соединения (например, CuBe, NiBe, Ni3Al), растворимость которых в твердом растворе на основе меди уменьшается с понижением температуры. При закалке таких сплавов образуется пересыщенный твердый раствор, при последующем искусственном старении в структуре формируются дисперсные интерметаллические соединения, упрочняющие сплавы меди.

По способу получения изделий сплавы меди подразделяют на деформируемые и литейные. Из деформируемых сплавов отливают слитки, которые затем подвергают горячей и холодной обработке давлением: прокатке, прессованию через матрицу или волочению для производства листов, лент, прутков, профилей, труб и проволоки. Литейные сплавы обладают хорошими литейными свойствами, из них отливкой в формы получают фасонные детали машиностроительного назначения, а также декоративно-прикладные изделия и скульптуры.

По основным легирующим элементам сплавы меди подразделяются на три основные группы: латуни — сплавы с цинком, бронзы — сплавы с другими химическими элементами, главным образом металлами, за исключением никеля и цинка, и медно-никелевые сплавы.

Сплавы меди широко применяют во всех областях техники: в качестве конструкционных, пружинных, антифрикционных и коррозионностойких материалов, как сплавы с высокой электро- и теплопроводностью, с высоким электросопротивлением и низким термическим коэффициентом электросопротивления, сплавы для термопар, художественного литья и др.

Латуни (от итал. lattoe — венец). Сплавы меди, содержащие до 45% Zn. Цинк дешевле меди, поэтому его введение в сплав одновременно с повышением механических, технологических и антифрикационных свойств приводит к снижению стоимости.

Латуни обладают высокими технологическими свойствами и применяются в производстве мелких деталей, особенно там, где требуются хорошая обрабатываемость и формуемость. Имеют более высокую твердость, чем медь, следовательно, труднее изнашиваются. Легко поддаются пластической деформации, это позволяет прокатывать их в тонкие листы, полосы, ленты, вытягивать в проволоку, штамповать, изготавливать разные профили и т. д.

Латуни плавятся при температурах ниже точки плавления меди и имеют более высокие литейные свойства (хорошую текучесть и малую склонность кликвации), что дает возможность получать отливки. Электропроводность и теплопроводность латуни ниже, чем меди. На практике применяют двойные (двухкомпонентные) и специальные (легированные), или многокомпонентные, латуни.

На свойства двойных латуней большое значение оказывает их фазовый состав. Предел растворимости цинка в меди при комнатной температуре составляет 39%. При повышении температуры он снижается и при 905 °С становится равным 32%. В связи с этим латуни, содержащие цинка менее 39%, имеют однофазную структуру (a-фаза) твердого раствора цинка в меди Си (Zn) с решеткой ГЦК. Они содержат Zn до 39% и называются однофазными или а-латунями. Такие латуни пластичны и легко поддаются обработке давлением (штамповке, прокатке и т. д.). Максимальная прочность и пластичность наблюдаются при содержании цинка 30%.

Читать также:  Самый лучший материал для ножа

Затем пластичность уменьшается за счет усложнения твердого раствора. Латуни с низким содержанием Zn (до 20%) называются томпаками. Томпак обладает высокой пластичностью, антикоррозионными и антифрикционными свойствами, хорошо сваривается со сталью, его применяют для изготовления биметалла сталь — латунь. Механические свойства однофазных латуней: ств« 300 МПа, 8 * 40%.

Если в сплаве содержится цинка больше предельной растворимости (39%), то он не полностью растворяется в меди, и после затвердевания сплава образуется вторая фаза ((3-фаза) на основе химического соединения CuZn. Такие сплавы называются двухфазными или (а + р)-латунями. При переходе из однофазной в двухфазную область при содержании до 45% цинка из-за высокой хрупкости и твердости p-фазы резко снижается пластичность и увеличивается прочность, твердость и износостойкость. Механические свойства двухфазных латуней:

В технике применяют 2 большие группы медных сплавов: латуни и бронзы.

2.2.Латуни

2.3.Латуни – сплавы меди с цинком (до 50% Zn) и небольшими добавками алюминия, кремния, свинца, никеля, марганца (ГОСТ 15527-70, ГОСТ 17711-80). Медные сплавы, предназначенные для изготовления деталей методами литья, называют литейными, а сплавы, предназначенные для изготовления деталей пластическим деформированием – сплавами, обрабатываемыми давлением.

Латуни дешевле меди и превосходят ее по прочности, вязкости и коррозионной стойкости. Обладают хорошими литейными свойствами.

Латуни, применяются в основном для изготовления деталей штамповкой, вытяжкой, раскаткой, вальцовкой, т.е. процессами, требующими высокой пластичности материала заготовки. Из латуни изготавливаются гильзы различных боеприпасов.

В зависимости от числа компонентов различают простые (двойные) и специальные (многокомпонентные) латуни.

Простые латуни содержат только Cu и Zn.

Специальные латуни содержат от 1 до 8% различных легирующих элементов (Л.Э.), повышающих механические свойства и коррозионную стойкость.

Al, Mn, Ni повышают механические свойства и коррозионную стойкость латуней. Свинец улучшает обрабатываемость резанием. Кремнистые латуни обладают хорошей жидкотекучестью и свариваемостью.

3.Бронзы

3.1.Бронзы – это сплавы меди с оловом (4-33% Sn), свинцом (до 30% Pb), алюминием (5-11% AL), кремнием (4-5% Si), сурьмой, фосфором и другими элементами.

Бронзы – это всякий медный сплав, кроме латуни. Это сплавы меди, в которых цинк не является основным легирующим элементом. Общей характеристикой бронз является высокая коррозионная стойкость и антифрикционность (от анти- и лат. frictio- трение). Бронзы отличаются высокой коррозионной устойчивостью и антифрикционными свойствами. Из них изготавливают вкладыши подшипников скольжения, венцы червячных зубчатых колес и другие детали.

Высокие литейные свойства некоторых бронз позволяют использовать их для изготовления художественных изделий, памятников, колоколов.

По химическому составу делятся на оловянные бронзы и без оловянные (специальные).

3.2.Оловянные бронзы обладают высокими механическими, литейными, антифрикционными свойствами, коррозионной стойкостью, обрабатываемостью резанием, но имеют ограниченное применение из-за дефицитности и дороговизны олова.

3.3.Специальные бронзы не только служат заменителями оловянных бронз, но и в ряде случаев превосходят их по своим механическим, антикоррозионным и технологическим свойствам:

Алюминиевые бронзы – 5-11% алюминия. Имеют более высокие механические и антифрикционные свойства, чем у оловянных бронз, но литейные свойства – ниже. Для повышения механических и антикоррозионных свойств вводят железо, марганец, никель (например, БрАЖ9-4). Из этих бронз изготовляют различные втулки, направляющие, мелкие ответственные детали.

Бериллиевые бронзы содержат 1,8-2,3% бериллия отличаются высокой твердостью, износоустойчивостью и упругостью (например, БрБ2, БрБМН1,7). Их применяют для пружин в приборах, которые работают в агрессивной среде.

Кремнистые бронзы – 3-4% кремния, легированные никелем, марганцем, цинком по механическим свойствам приближаются к сталям.

Свинцовистые бронзы содержат 30% свинца, являются хорошими антифрикционными сплавами и идут на изготовление подшипников скольжения.

Медные сплавы обозначают начальными буквами их названия (Бр или Л), после чего следуют первые буквы названий основных элементов, образующих сплав, и цифры, указывающие количество элемента в процентах.

– БрА9Мц2Л – бронза, содержащая 9% алюминия, 2% Mn, остальное Cu («Л» указывает, что сплав литейный);

– ЛЦ40Мц3Ж – латунь, содержащая 40% Zn, 3% Mn,

l% Fe, остальное Cu;

– Бр0Ф8,0-0,3 – бронза содержащая 8% олова и 0,3% фосфора;

– ЛАМш77-2-0,05 – латунь содержащая 77% Cu, 2% Al, 0,055 мышьяка, остальное Zn (в обозначении латуни, предназначенной для обработки давлением, первое число указывает на содержание меди).

В несложных по составу латунях указывают только содержание в сплаве меди:

– Л96 – латунь содержащая 96% Cu и

– Лб3 – латунь содержащая 63% Cu и 37% Zn.

Высокая стоимость меди и сплавов на ее основе привела в 20 веке к поиску материалов для их замены. В настоящее время их успешно заменяют пластиками, композиционными материалами.

Медные сплавы классифицируют:

Читать также:  Чехол для ножа из ткани

по химическому составу на:

— медноникелевые сплавы; по технологическому назначению на:

по изменению прочности после термической обработки ъ&.

Латуни — сплавы меди, в которых главным легирующим элементом является цинк. В зависимости от содержания легирующих компонентов различают:

— простыв (двойные) латуни;

— многокомпонентные (легированные) латуни. Простые латуни маркируют буквой «Л» и цифрами,

показывающими среднее содержание меди в сплаве. Например, сплав Л 90 — латунь, содержащая 90 % меди, остальное — цинк.

В марках легированных латуией группы букв и цифр, стоящих после- них, обозначают легирующие элементы и их содержание в процентах. Например, сплав ЛАН КМц 75—2—2,5—0,5—0,5 — латунь алюминиевоникель-

кремнистомарганцевая, содержащая 75 % меди, 2 % алюминия, 2,5 % никеля, 0,5 % кремния, 0,5 % марганца, остальное — цинк.

В зависимости от основного легирующего элемента различают алюминиевые, кремнистые, марганцевые, никелевые, оловянистые, свинцовые и другие латуни.

Алюминиевые латуни — ЛА 85-0,6, ЛА 77-2, ЛАМш 77-2-0,05 обладают повышенными механическими свойствами и коррозионной стойкостью.

Кремнистые латуни — ЛК 80-3, ЛКС 65-1,5-3 и другие отличаются высокой коррозионной стойкостью в ТМООферНШ условиях и в морской воде, а также высокими механическими свойствами.

Марганцевые латуни — ЛМц 58-2, ЛМцА 57-3-1, деформируемые в горячем и холодном состоянии, облада-нмiii.K-oKiiMii механическими свойствами, стойкие к коррозии и морской воде и перегретом паре.

Никелевые латуни — ЛН 65-5 и другие имеют высокие механические свойства, хорошо обрабатываются длплснпем в горячем и холодном состоянии.

Oловянистыe латуни- ЛО—90-1, ЛО 70-3, ЛО 62-1 отличаются повышенными антифрикционными свойствами и коррозионной стойкостью, хорошо обрабатываются.

Свинцовые латуни — ЛС 63-3, ЛС 74-3, ЛС 60-1 характеризуются повышенными антифрикционными свойствами и хорошо обрабатываются резанием. Свинец в этих сплавах присутствует в виде самостоятельной фазы, практически не изменяющей структуры сплава.

Бронзы — это сплавы меди с оловом и другими элементами (алюминий, кремний, марганец, свинец, бериллий). В зависимости от содержания основных компонентов, бронзы можно условно разделить на:

— оловянные, главным легирующим элементом которых является олово;

— безоловянные (специальные), не содержащие олова. Бронзы маркируют буквами «Бр», правее ставятся буквенные индексы- элементов, входящих в состав. Затем следуют цифры, обозначающие среднее содержание элементов в процентах (цифру, обозначающую содержание меди, в бронзе, не ставят). Например, сплав марки БрОЦС 5-5-5 означает, что бронза содержит олова, свинца и цинка по 5 %, остальное — медь (85 %).

Оловянные бронзы обладают высокими антифрикционными свойствами;-нечувствительны к перегреву, морозостойки, немагнитны.

Для улучшения качества оловянные бронзы легируют цинком, свинцом, никелем, фосфором и другими элементами. Легирование фосфором повышает механические, технологические, антифрикционные свойства оловянных бронз. Введение никеля способствует повышению механических и противокоррозионных свойств. При легировании свинцом увеличивается плотность бронз, улучшаются их антифрикционные свойства и обрабатываемость резанием, однако заметно снижаются механические свойства. Легирование цинком улучшает технологические свойства. Введение железа (до 0509 %> способствует повышению механических свойств бронз, однако с увеличением степени легирования резко снижаются их коррозионная стойкость и технологические свойства.

В зависимости от технологии- переработки оловянные и специальные бронзы подразделяют на:

Деформируемые оловянные бронзы содержат до 8 % олова. Эти бронзы используют для изготовления пружин, мембран и других деформируемых деталей. Литейные бронзы содержат свыше 6 % олова, обладают высокими антифрикционными свойствами и достаточной прочностью; их используют для изготовления ответственных узлов трения (вкладыши подшипников скольжения).

Специальные бронзы включают в свой состав алюминий, никель, кремний, железо, бериллий, хром, свинец и другие элементы, В большинстве случаев название бронзы определяется основным легирующим компонентом.

Алюминиевые бронзы обладают высокими механическими, антифрикционными и противокоррозионными свойствами. Эти бронзы нашли применение для изготовления ответственных деталей машин, работающих при интенсивном изнашивании и повышенных температурах.

Кремнистые бронзы характеризуются высокими антифрикционными и упругими свойствами, коррозионной стойкостью. Дополнительное легирование кремнистых бронз другими элементами способствует улучшению эксплуатационных и технологических свойств бронз: цинк повышает их литейные свойства, марганец и никель улучшают коррозионную стойкость и прочность, свинец — обрабатываемость резанием и антифрикционные свойства. Кремнистые бронзы применяют взамен оловянных для изготовления антифрикционных деталей, пружин, мембран приборов и оборудования,

Свинцовые бронзы используют в парах трения, эксплуатируемых при высоких относительных скоростях перемещения деталей. Для повышения механических свойств и коррозионной стойкости свинцовые бронзы легируют никелем и оловом.

Бериллиевые бронзы отличаются высокими прочностными свойствами, износостойкостью и стойкостью к воздействию коррозионных сред. Они обеспечивают работоспособность изделий при повышенных температурах (до 500°С), хорошо обрабатываются резанием и свариваются. Бронзы этого типа используют для изготовления деталей ответственного назначения, эксплуатируемых при повышенных скоростях перемещения, нагрузках, температуре.

Металлы с которыми медь образует сплавы

Знакомство человека с медью исчисляется тысячелетиями, где ее прямым конкурентом может выступать только золото, успевшее приобрести статус благородного металла.

Свойства меди и место в жизни человека

В чистом состоянии, элемент таблицы Менделеева, именуемый Cu, встречается крайне редко. Это – пластичный металл с легким розовым оттенком. Человеку же он знаком под другим цветом: желто-красным, чаще коричнево-красным. Это связано с высокой окислительной способностью вещества. Попадая на воздух, медь покрывается тонкой оксидной пленкой, что и делает цвет металла ближе к красному.

Читать также:  Как определяется удельный вес

Металлы с которыми медь образует сплавы

медь в чистом виде

Первобытная тяга человека к меди основывалась на свойстве пластичности, позволяющей придавать этому металлу требуемую форму путем несложной обработки. Медь легко поддается гравировке, нанесению резьбы, оставаясь при этом достаточно прочным. Современная ценность меди, как металла – высокие показатели проводимости: электрической и тепловой. Подобная информация позволяет выделить основные направления поиска этого цветного металла в виде отходов и лома.

Удельный вес меди, составляющий округленно 8.9 г/см 3 , также полезен сборщику металлолома. Зная объем собранного лома, в частности проводов, жил, легко рассчитать его оценочный вес.

Сплавы меди

Помимо относительно чистой формы, характеризуемой ничтожным содержанием примесей, медь – составляющий элемент многих сплавов, среди которых наиболее известны:

Металлы с которыми медь образует сплавы

Латунь — сплав меди

  • бронза;

Металлы с которыми медь образует сплавы

  • мельхиор.

Металлы с которыми медь образует сплавы

Мельхиор — больше относится к серебру, нежели к меди

Отдельно стоит выделить медный сплав с никелем, именуемый мельхиор. Он известен широкой аудитории по разменным монетам советских времен, начиная с 10 копеек а также подарочные наборы столовых приборов, но существенно уступает первым двум в степени востребованности.

Наиболее перспективными для нужд человека остаются: латунь и бронза. Желтая медь, так иначе называют латунь, на бытовом уровне широко востребована в сантехнике. Те, кто сталкивался с подбором крана или смесителя, хорошо знают это. По химическому составу различают:

  • двойные латуни – сплав меди с цинком;
  • многокомпонентные, в которых Zn остается основным легирующим элементом.

Процентное содержание цинка, даже в двойной латуни, широко варьируется. Сплавы, где доля Zn составляет не более 20%, именуют томпаком.

Металлы с которыми медь образует сплавы

Пули из томпака

Определить состав латуни можно исходя из маркировки: для двойных сплавов после буквы «Л» указывается процентное содержание меди, например Л60. Маркировка многокомпонентных сплавов строится аналогично, только за «Л» следуют легирующие примеси с их концентрациями. Таким образом, многокомпонентная латунь марки ЛМц58- 2, использования при изготовлении деталей машин, гаек, болтом, арматуры, подразумевает содержание меди – 58%, цинка – 40%, марганца – 2%.

Бронза – в стандартном понимании, представляет медный сплав с оловом, однако на практике также обладает весьма вариативным составом. Фактически под бронзой принято понимать любой медный сплав, где никель и цинк не являются основными легирующими элементами. Стоит отметить, что найти оловянную бронзу достаточно сложно. Большее распространение получили ее безоловянные сорта.

Медь и ее сплавы, как источник цветного вторичного металла

Взвешивая «чистый» металл и его сплавы на весах прибыльности при сдаче металлолома, можно сказать, что стоимость первого в полтора – два раза выше. Однако весовое содержание меди в металлических конструкциях часто уступает на выходе ее сплавам.

Так, медные сплавы можно обнаружить среди пришедших в негодность изделий сантехники: водопроводные краны, вентили, душевые шланги и трубки. Многие старые светильники, дверная фурнитура также изготовлены из медных сплавов, однако верх пьедестала, по весовому содержанию, занимают радиаторы отопления.

Непосредственно медь стоит искать среди бытовых приборов, желательно уже выработавших свой эксплуатационный ресурс:

  • ламповый телевизор — 1,5 кг;

Металлы с которыми медь образует сплавы

Ламповый телевизор с медью

  • полупроводниковый ТВ приемник – 0,5 кг;
  • компрессионный холодильник – около килограмма в двигателе, еще столько же могут содержать трубки радиатора;
  • электродвигатели – в среднем килограмм на киловатт мощности;

Незаслуженно обходят вниманием магнитные пускатели, хотя оборудование помимо обмотки содержит медь в шинах. Небольшое содержание металла, менее килограмма принесут автомобильные стартеры и генераторы, дроссели люминесцентных ламп, трансформаторы, реле, компрессоры холодильников.

Первичная медь, получение и применение

В зависимости от чистоты металла, различают следующие марки:

Металлы с которыми медь образует сплавы

Катодная медь М0

  • М1 — 99,9%;
  • М2 — 99,7%;
  • М3 — 99,5%;
  • М4 -99%.

Одним из источников сырья для получения металла выступает медный лом, перерабатываемый согласно технологии огневого рафинирования.

Природные ресурсы металла составляет самородная медь и сульфидные руды, в частности медные колчедан и блеск. Существует два металлургических способа получения металла из руды. На основной метод – пирометаллургический, приходится 90% первичного металла, оставшиеся 10% – результат гидрометаллургической технологии.

Металлы с которыми медь образует сплавы

Физические свойства меди не могли остаться незамеченными в промышленности. Ее высокая электропроводность позволяет использовать металл при изготовлении электродов, проводов, особенно силовых кабелей (марка М0). Относительная химическая инертность меди нашла применение металлу в узлах аппаратуры для работы с огнеопасными веществами.

Высокая теплопроводность металла, наряду с устойчивостью к коррозии, используются при изготовлении сантехнических конструкций, узлов, а также кровельных покрытий. В настоящее время, медь вытеснили тут другие, более дешевые материалы.

Достаточно широкий рынок применения меди — производство сплавов. Латунь и бронза, где Cu является основным компонентом, уже были рассмотренные ранее. Широко используется другой сплав дюралюминий, где содержание меди доходит до 5%.

Оставить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *