Классы точности обработки поверхности

Чтобы достичь заданной точности размеров детали и установить при контроле, действительно ли получен заданный размер, необходимо обеспечить при обработке надлежащий класс шероховатости поверхности.

Необходимая точность обработки, отвечающая требованиям заданного класса точности, достигается на различных станках разными способами.

Точность выполнения размеров определяется квалитетами (в системе ОСТ – классы точности). Квалитет (по стандартам СЭВ – Совет Экономической Взаимопомощи) показывает относительную точность изготовления детали.

В зависимости от величины допуска на размер установлено 19 квалитетов точности (IT01, IT0, IT1, IT2. IT17; IT – Intеrnational Tolerance – международный допуск). IT8 – допуск системы по 8 квалитету ISO (ISO – международная организация по стандартизации).

Классы точности обработки поверхности

Практикой определены взаимосвязи между видами обработки и шероховатостью поверхности. Так, например, установлено, что средняя высота неровностей не должна превышать 10-25% от допуска на обработку. Это позволило установить достижимую шероховатость поверхности для различных видов обработки, а с учётом затрат при любом другом способе обработки – и экономически достижимую шероховатость поверхности.

Различные методы обработки по-разному влияют на качество поверхности.

Таблица 1. Характеристики точности и качества, характерные для различных способов обработки резанием

№ п/пВид обработкиТочность размеров формыКачество поверхности
квалитетстепень точностиRа мкм
Доводка3-40,08-0,01
Суперфиниширование3-40,16-0,01
Хонингование3-40,63-0,01
ПолированиеПредшествующ.Пр.обработка0,63-0,02
Тонкое точение – строгание – шлифование – фрезерование – растачивание5-65-6 6-7 3-4 6-7 5-61,25-0,32 6,3-1,2 0,63-0,16 1,6 1,25-0,32
Чистовое шлифование – фрезерование – точение -растачивание – строгание -развертывание – зенкерование5-6 6-7 5-6 5-7 6-76-7 8-9 8-9 6-7 9-101,25-0,63 6,3-3,2 10-1,25 5-2,5 6,3-3,2 1,25-0,32 6,3-3,2
Черновое точение – шлифование – растачивание – сверление – зенкерование – развертывание – фрезерование – строгание – долбление9-10 7-9 7-9 11-13 10-11 7-96-7 9-10 13-15 8-10 7-9 9-10 9-10 9-1040-20 2,5-1,25 80-50 25-5 25-12,5 2,5-1,25 50-25 25-12,5 25-12,5
Сверление по кондуктору11-128-925-6,3
Координатное растачивание4-51,25-0,32
Нарезание резьбы: метчиком (плашкой) резцом фрезой10-5 5-1,25 5-1,6

Для достижения заданного взаимного расположения поверхностей, формы и размеров деталей, их шероховатости и физико-механических свойств при производстве машиностроительной продукции применяют различные методы обработки: резание лезвийным и абразивным инструментами; поверхностное пластическое деформирование; электрофизические, электрохимические и другие методы. По мере приближения размера обрабатываемой поверхности к заданному размеру по чертежу обработка заготовки может быть нескольких видов: обдирочная, черновая, получистовая, чистовая, тонкая, отделочная.

Обдирочная обработка применяется для крупных поковок и отливок 16-18-го квалитетов точности. Она уменьшает погрешности формы и пространственных отклонений грубых заготовок, обеспечивая 15-16-й квалитеты точности, шероховатость поверхности Ra больше 100 мкм.

Черновая обработка выполняется в большом диапазоне точности (12-16-й квалитеты). Шероховатость поверхности Ra = 100-25 мкм.

Получистовая обработка применяется для заготовок, к точности которых предъявляются повышенные требования. Этот вид обработки обеспечивает 11-й, 12-й квалитеты точности. Шероховатость поверхности
Ra = 50,0-12,5 мкм.

Чистовая обработка применяется как окончательный вид обработки для тех заготовок, заданная точность которых укладывается в точность, достигаемую чистовой обработкой (8-11-й квалитеты). Шероховатость поверхности обеспечивается в пределах Ra = 12,5-2,5 мкм.

Тонкая обработка применяется для окончательного формирования поверхностей детали и при малых операционных припусках. Шероховатость поверхности находится в пределах значений Ra = 2,5-0,63 мкм.

Отделочная (финишная) обработка используется для получения требуемой шероховатости поверхности детали на точность обработки влияния почти не оказывает. Выполняется, как правило, в пределах допуска предшествующей обработки. Отделочная обработка обеспечивает получение шероховатости поверхности Ra = 0,63-0,16 мкм.

В современном машиностроении наиболее распространены обработка заготовок лезвийным и абразивным инструментами, которые формируют точность и качество поверхностей деталей. Лезвийным инструментом из сверхтвердых материалов можно обрабатывать заготовки с твердостью до 45 HRC, а абразивным инструментом целесообразно выполнять обработку металлов с более высокой твердостью.

Обработка лезвийным инструментом используется как процесс чистовой и тонкой обработки: тонкое точение, тонкое фрезерование, тонкое развертывание, протягивание, прошивание.

Сущность тонкого точения заключается в снятии стружки малого по толщине сечения при больших скоростях резания (100-1000 м/мин): для чугунных заготовок скорость резания составляет 100-150 м/мин; для стальных – 150-250 м/мин; для цветных сплавов – до 1000 м/мин. Подача устанавливается для предварительного хода – 0,15 мм/об, а для окончательного – 0,01 мм/об. Глубину резания принимают 0,2-0,3 и 0,05-0,01 мм соответственно.

Малые по толщине сечения стружки не вызывают больших усилий резания и значительных деформаций технологической системы СПИД, что обеспечивает 6-8-й квалитеты точности (при обработке цветных металлов и сплавов – 5-6-й квалитеты). Шероховатость поверхности у заготовок из черных металлов Ra = 2,50-0,63 мкм; цветных металлов – Ra = 0,32-0,16 мкм.

Тонкое точение применяется перед хонингованием, суперфинишированием, полированием и выполняется на высокооборотных станках (10-15 тыс. мин -1 ). Радиальное биение шпинделя не должно превышать 0,005 мм. Все вращающиеся детали должны быть точно отбалансированы.

Резцы оснащаются твердыми сплавами, алмазом, эльбором и другими режущими материалами с высокой износостойкостью. Тонкое обтачивание обеспечивает допуск размеров 5-80 мкм, овальность и конусообразность не более 3 мкм.

Тонкое фрезерование осуществляется преимущественно торцовыми фрезами при обработке плоских поверхностей. Фрезу устанавливают с уклоном 0,0001, чтобы исключить контакт с поверхностью зубьев, не участвующих в резании. При тонком фрезеровании снимается припуск 0,2-0,5 мм, а отклонение от плоскостности на 1 м длины составляет 0,02-0,04 мм. Шероховатость поверхности Ra= 2,5-0,63 мкм.

Читать также:  Термодатчик для аккумулятора шуруповерта

Тонкое развертывание обеспечивает высокую точность и малую шероховатость, однако не исправляет положения оси обрабатываемого отверстия, поскольку снимает равномерный припуск по всей поверхности. Тонкое развертывание обеспечивает точность, соответствующую 5-7-му квалитетам, Ra = 1,25-0,63 мкм, и чаще всего выполняется после сверления и зенкерования или чернового и чистового растачивания отверстий.

Протягивание применяется для обработки внутренних и наружных поверхностей. При чистовом протягивании цилиндрических отверстий обеспечивается точность 6-9-го квалитетов (шероховатость поверхности
Ra = 2,50-0,63 мкм), протягивание наружных поверхностей обеспечивает точность 11-го квалитета. Протягивание выполняется на горизонтальных и вертикальных станках, универсальных и специальных полуавтоматах и автоматах.

Прошивание осуществляется специальным инструментом (прошивкой), который проталкивают через обрабатываемое отверстие в заготовке с помощью пресса.

КЛАССЫ ТОЧНОСТИ Шлифовальные станки

  • admin
  • Классы точности обработки поверхности28.03.2016
  • Классы точности обработки поверхности764
  • Классы точности обработки поверхности0 Комментариев

Чем меньше допуск на размер детали, тем меньше колебания действительных размеров, точнее изготовлена деталь. Чем боль­ше допуск, тем менее точна деталь.

В зависимости от величины допуска для поверхностей диа­метром от 1 до 500 мм установлено 10 классов точности: 1; 2; 2а; 3; За; 4; 7; 8; 9. Место 6-го класса свободно.

По классу точности определяется технология обработки вала и отверстия. Так. для обеспечения 1-го класса точности отвер­стия последовательно сверлят, зенкеруют, развертывают, шли­фуют, хонингуют; валы соответственно двукратно обтачивают, двукратно шлифуют, доводят или суперфинишируют.

При 2-м классе точности, который является основным в стан­костроении, автотракторостроении, электромашиностроении, приборостроении и других отраслях, отверстия обычно сверлят, зенкеруют, двукратно развертывают или двукратно шлифуют; валы двукратно обтачивают и двукратно шлифуют.

Для получения 3-го класса точности отверстия сверлят, зен­керуют и одно-или двукратно развертывают; валы подвергают черновому и чистовому точению в два прохода.

При классе точности За обработка деталей производится так же, как и по 3-му классу точности, но с меньшим количеством проходов.

Для получения 4-го класса точности отверстие обрабатывают сверлением по кондуктору с небольшими подачами или одно­кратным растачиванием; валы однократко обтачивают.

При обработке по 5-му классу точности отверстия сверлятся или растачиваются, валы обтачиваются начерно.

7, 8 и 9-й классы точности получают литьем и штамповкой заготовок, а также на несопрягаемых поверхностях при черновой механической обработке.

На шлифовальных станках детали в основном обрабатывают­ся не ниже, чем по 4-му классу точности.

В табл. 1 указаны предельные отклонения для размеров вала и отверстия в системе отверстия 2-го класса точности.

Чтобы уменьшить типоразмеры инструментов, изготовляе­мых на инструментальных заводах, по ГОСТ 7713—62 все стандартные допуски разбиты на 3 ряда — степени предпоч­тительности.

В первый ряд входят валы с полями допусков Н; С-В; X; ПР 22а; ПР 12а; С3-В3; Х3; С4-В4; Х4; С5-В5 и отверстия с полями допусков А-С; А2а-С2а; А3-С3; А4-С4; А5-С5.

Во второй ряд степени предпочтительности входят валы с по­лями допусков CpBi; ПР; Г; П; Д; Л; С2а-В2а; Ш3; Х5 и отвер­стия с полями допусков Hi; П^ Г; Н; П; X; Х3; А3а-С3а; Х4.

Второй ряд степени предпочтительности используют в тех слу­чаях, когда отклонения первого ряда не удовлетворяют условиям изготовления, сборки или эксплуатации изделия.

Стандартные поля допусков, не вошедшие в предпочтитель­ные ряды, следует применять только в тех случаях, когда целе­сообразность их доказана.

К третьему ряду относятся остальные посадки, предусмотрен­ные государственными стандартами.

Изготовление деталей с малыми допусками на размеры воз­можно только при малой шероховатости обработанной поверх­ности.

Различают понятия шероховатости (чистоты) поверхности и качества ее. Шероховатость поверхности определяется ее гео­метрическим состоянием, а качество, помимо этого, характери­зуется также физическим состоянием поверхностного слоя. Под физическим состоянием поверхности понимают твердость, нали­чие местных прижогов, мест отпуска, трещин, изменение строения кристаллической решетки в результате действия усилий, возни­кающих при снятии стружки, теплообразовании и по другим при­чинам.

При чистовых операциях, когда снимают малые стружки и возникают небольшие усилия и тепловыделения, изменения фи­зического состояния поверхностного слоя незначительны.

Геометрическое состояние поверхности характеризуется не­ровностями (микронеровностями) поверхности, которые остают­ся после обработки.

Высота неровностей поверхности определяется формой лез­вия режущего инструмента, подачей, зернистостью шлифоваль­ного круга, скоростью резания, вибрацией инструмента, детали, станка и другими причинами.

Наличие микронеровностей (шероховатости) на поверхности детали влияет на ее износоустойчивость, усталостную прочность и коррозионную стойкость, так как во впадинах на поверхности концентрируется влага и другие вредные выделения, вызываю­щие под действием кислорода интенсивное окисление поверхно­сти металла. Кроме того, в местах перехода от впадин к верши­нам концентрируются напряжения, что приводит к образованию местных трещин в процессе эксплуатации деталей. Поэтому в чертежах детали указывается класс чистоты, который должен быть обеспечен при обработке этой детали. Для получения высо­кой чистоты поверхности необходимо, чтобы при шлифовании не вибрировали станок, круг и деталь, кроме того, следует ис­пользовать мелкозернистые круги, производить своевременную правку круга алмазом, работать при высоких скоростях шли­фовального круга, малых продольных подачах с равномерным плавным перемещением и тщательно очищать и фильтровать охлаждающую жидкость.

Для измерения чистоты поверхности служат профилографы, профилометры и двойной микроскоп академика Линника.

ГОСТ 2789—59 установлены 14 классов чистоты поверхности в зависимости от высоты неровностей, обозначаемой Rz, или сред­неарифметического отклонения профиля поверхности Ra в мик­ронах.

Для определения среднеарифметического отклонения профи­ля (рис. 3) все высоты от точек профиля до средней линии его складывают и делят на число этих высот:

л И 4 У2 + Уз + У* + Уъ + ЬУ/1 11

Высота неровностей R7 определяется как среднее расстояние между пятью высшими точками выступов и пятью низшими точ­

Классы точности обработки поверхности

ками впадин, измеренных от линий, параллельных средней линии профиля па определенной длине поверхности L,

Читать также:  Затяжка колесных гаек динамометрическим ключом

л (h ‘ h3 г й5 4 Л7 4

/і9) — (/i>, + hl 4“ h6 4- hA 4- Л|.>)

По ГОСТ для каждого класса чистоты максимальные значе­ния Ra и R2 регламентированы (см. табл. 2). Классы чистоты по­верхностей от 6 до 14 дополнительно разбиваются на три разря­да— а, б, в (см. табл. 3).

Чистота поверхности деталей определяется специальными приборами или сравнением с чистотой эталонных образцов под микроскопом.

Профилограф с увеличением от 1000 до 200 000 раз наносит на бумажную ленту изображение микронеровностей измеряемой поверхности, затем по профилограмме ведут измерения неровно­стей.

На шкале профилометра указывается значение Ra или Rz. чем и определяется класс чистоты поверхности.

В двойном микроскопе академика Линника пучок света от одного микроскопа направляется под углом к поверхности для получения «светового сечения» профиля. Это сечение профиля наблюдают через второй микроскоп под большим увеличением, по шкале на линзе определяют высоту неровностей и по табл. 2— класс чистоты.

Для достижения определенной точности размеров деталей при обработке приходится ограничивать шероховатость поверх­ности. Зависимость между этими величинами приводится в табл. 4.

Значение Rj и Rz Для различных классов чистоты

Среднее арифметиче­ское откло­нение профиля R, м/с

Высота неровностей Rz, мк

Среднее арифметиче­ское откло­нение профиля V мк

Взаимозаменяемость деталей.

Выпуск велосипедов, мотоциклов, тракторов, автомобилей, электродвигателей, швейных и других машин осуществляется на заводах такими темпами, когда счет времени обработки и сборки ведется не только минутами, но и секундами. Детали этих машин должны быть изготовлены точно по чертежам и техническим условиям так, чтобы при сборке они подходили одна к другой без слесарной подгонки, что сокращает время на сборку и удешевляет стоимость изделия. Важно также, чтобы при ремонте машины новая деталь, заменяющая изношенную, могла быть установлена на ее место без подгонки. Детали, удовлетворяющие таким требованиям, называются взаимозаменяемыми. Взаимозаменяемость – это свойство деталей занимать свои места в узлах и изделиях без предварительного подбора или подгонки по месту.

Сопряжение деталей.

Две детали, подвижно или неподвижно соединяемые друг с другом, называют сопрягаемыми. Размеры, по которым происходит соединение этих деталей, называют сопрягаемыми размерами. Размеры, по которым не происходит соединение деталей, называют свободными размерами. Примером сопрягаемых размеров может служить наружный диаметр фрезерной оправки и соответствующий ему диаметр отверстия в насадной фрезе, диаметр шейки оправки и соответствующий ему диаметр отверстия в подшипнике подвески. Примером свободных размеров может служить наружный диаметр установочных колец фрезерной оправки, длина фрезерной оправки, ширина цилиндрической фрезы.

Сопрягаемые детали должны быть выполнены взаимозаменяемыми.

Понятие о точности обработки.

Изготовить партию взаимозаменяемых деталей абсолютно одинакового размера невозможно, так как на точность обработки влияют неточность и износ станка, износ фрезы, неточности при установке и закреплении заготовки и другие причины. Как правило, все детали данной партии при обработке имеют отклонения от заданных размеров и формы. Но величины этих отклонений должны быть назначены таким образом, чтобы сопрягаемые размеры могли обеспечить сборку деталей без подгонки, т.е. чтобы детали были взаимозаменяемыми.

Конструкторы изделий при назначении величины допускаемых отклонений на сопрягаемые детали руководствуются установленными государством стандартами – ГОСТ. Ниже вкратце излагаются основные понятия о допусках и предельных отклонениях, вытекающие их ГОСТ 7713-55.

Понятие о допуске и предельных отклонениях. Величина допустимых отклонений указывается в чертежах детали со знаками плюс и минус.

Знак минус показывает, что деталь может быть изготовлена с отклонением в меньшую сторону; знак плюс показывает, что деталь может быть изготовлена с отклонением в большую сторону. Например, поставленный в чертеже бруска размер 10-0,1 мм показывает, что брусок может быть отфрезерован так, чтобы после его обработки его размер лежал в пределах между 10 мм и 9,9 мм. Точно также поставленный в чертеже диаметр паза 10 +0,2 мм показывает, что паз может быть отфрезерован так, чтобы после обработки его размер лежал в пределах между 10 мм и 10,2 мм.

Поставленный в чертеже размер 10 +0,2 -0,1 мм показывает, что обработанная деталь будет годной, если ее размер составляет не менее 9,9 мм и не более 10,2 мм, т.е. лежит в этих пределах.

Номинальным размером называется основной расчетный размер, от которого исходят при назначении отклонений. Если в чертеже указан размер 10 +0,2 -0,1 мм, то размер 10 мм называется номинальным.

Действительным размером называется размер, полученный при измерении обработанной детали. Размеры, между которыми может находиться действительный размер годной детали, называются предельными размерами. Действительный размер детали с размерами 10 +0,2 -0,1 мм может лежать в пределах 10+0,2 = 10,02 мм и 10-0,1 =9,9 мм. Больший размер называется наибольшим предельным размером, а меньший – наименьшим предельным размером.

Разность между наибольшим и наименьшим предельными размерами называется допуском размера.

  • Верхним предельным отклонением называется разность между наибольшим предельным размером и номинальным размером.
  • Нижним предельным отклонением называется разность между наименьшим предельным размером и номинальным размером.

Допуск можно также определить, как разность между верхним и нижним предельными отклонениями.

Действительным отклонением называется разность между действительным и номинальным размерами.

При графическом изображении допусков отклонения размеров откладываются от линии, соответствующей номинальному размеру и называемой нулевой линией; положительные отклонения откладываются вверх от нулевой линии, а отрицательные – вниз. Классы точности обработки поверхности

Зазоры и натяги.

Если брусок с размерами грани 10-0,1 мм посадить в паз с размерами грани 10 +0,2 +0,1 мм, то в соединении бруска с пазом получится зазор, и брусок можно будет передвигать вдоль паза. Такая посадка (сопряжение двух деталей) называется свободной. Наибольший зазор в этом случае составит 0,3 мм, а наименьший будет равен 0,1 мм.

Читать также:  Чистка латуни лимонной кислотой

Если же размер бруска будет 10 +0,2 +0,1 мм, а паза 10-0,1 мм, то брусок не войдет свободно в паз и его придется вставлять с силой или запрессовывать. В соединении получится натяг или отрицательный зазор, наименьшая величина которого равна 0,1 мм. А наибольшая 0,3 мм. Такая посадка называется неподвижной, так как брусок нельзя будет передвигать вдоль паза.

Таким образом, можно сделать следующие заключения.

  • Зазором называется положительная разность между размером паза и размером бруска, обеспечивающая свободу их движения относительно друг друга.
  • Натягом называется отрицательная разность между размером паза и размером бруска (размер бруска больше размера паза), которая после посадки бруска в паз создает неподвижное их соединение.

Посадки.

Посадкой называется характер соединения сопрягаемых деталей, определяемый разностью между размерами паза и бруска, создающий большую или меньшую свободу (зазор или натяг) их относительного перемещения или степень сопро­тивления взаимному перемещению. В зависимости от наличия в сопряжении бруска и паза зазора или натяга различают посадки с зазором, с натягом и переходные.

Посадками с зазором, или свободными, называют такие посадки, при которых обеспечивается возможность относительного перемещения сопряженных деталей во время работы. В зависимости от величины зазора степень относительного перемещения деталей, сопряженных свободной посадкой, может быть различной. Для вращения шпинделя фрезерного станка в подшипниках зазор должен быть меньшим и, следовательно, посадка более тугой, чем для посадки колец на фрезерную оправку.

Посадками с натягом, или неподвижными, называют посадки, при которых во время работы не должно происходить перемещения сопряженных деталей относительно друг друга. В зависимости от величины натяга степень свободы сопряженных деталей неподвижной посадки может быть различной. Так, посадку шейки вала в кольцо шарикоподшипника производят с меньшим натягом, чем посадку колеса железнодорожного вагона на шейку оси.

При переходных посадках возможно получение, как натягов, так и зазоров. При наибольшем предельном размере бруска и наименьшем предельном размере паза получается натяг, а при наименьшем предельном размере бруска и наибольшем предельном размере паза получается зазор (в таблицах допусков в графе «натяг» обозначен знаком минус).

Ниже приводятся посадки, относящиеся к рассмотренным трем группам; в скобках даются их сокращенные обозначения. Классы точности обработки поверхности

Наибольший натяг получается при горячей посадке, меньший — при прессовых посадках; наименьший зазор получается при скользящей посадке, немного больший — при посадке движения, почти втрое больший при ходовой, затем еще больший при легкоходовой и, наконец, наибольший при широкоходовой посадке.

При глухой, тугой, напряженной и плотной посадках, как указывалось выше, возможны натяги и зазоры в зависимости от получающихся отклонений размера.

Классы точности.

Точность изготовления характеризуется величиной допускаемых отклонений от заданных размеров и формы. Для разных машин требуются детали с различной точностью обработки. Очевидно, что детали плуга, дорожного катка и других сельскохозяйственных и дорожных машин могут быть изготовлены менее точно, чем детали фрезерного станка, а детали фрезерного станка требуют меньшей точности, чем детали измерительного прибора. В связи с этим в машиностроении детали разных машин изготовляют по разным классам точности. В СССР (были) приняты десять классов точности.

  • пять из них: 1-й, 2-й, 2а, 3-й, За — требуют наибольшей точности обработки;
  • два других: 4-й и 5-й — меньшей;
  • три остальных: 7-й, 8-й, 9-й — еще меньшей.

Применение классов точности в различных областях

  • 1-й класс точности применяют при изготовлении особо точных изделий. Вследствие очень малых допусков работа по 1-му классу точности требует высокой квалификации рабочего и точного оборудования, приспособлений и инструмента.
  • 2-й и 2а классы точности применяют наиболее часто. По ним изготовляют ответственные детали станков, автомобильных, тракторных, авиационных и электрических двигателей, текстильных и других машин.Наряду с этим в отраслях машиностроения, выпускающих указанные машины, детали менее ответственных соединений из­готовляют по 3-му, 4-му, 5-му и другим более грубым классам точности.
  • 3-й и За классы точности применяют главным образом в тяжелом машиностроении при производстве турбин, паровых машин, двигателей внутреннего сгорания, трансмиссионных деталей и т. д.
  • По 4-му классу точности изготовляют детали сельскохозяйственных машин, паровозов, железнодорожных вагонов и т. д.
  • 5-й класс точности применяют в машиностроении для неответственных деталей менее точных механизмов.
  • 7-й, 8-й и 9-й классы точности применяют при изготовлении более грубых деталей и особенно при заготовительных операциях: литье, штамповке, медницко-слесарных работах и т. д.
  • Свободные размеры деталей выполняют обычно по 5-му или 7-му классам точности.

Чтобы показать, с какой посадкой и по какому классу точности нужно изготовить деталь, в чертежах на номинальных сопрягаемых размерах ставится буква, обозначающая посадку, и цифра, соответствующая классу точности. Например, С4 означает: скользящая посадка 4-го класса точности; Х3ходовая посадка 3-го класса точности и т. п. Для посадок 2-го класса точности (особенно широко распространенных) цифра 2 не ставится. Поэтому, если в чертеже на сопрягаемом размере рядом с буквой посадки нет цифры, то это значит, что деталь надо изготовить по 2-му классу точности. Например, Л означает легкоходовая посадка 2-го класса точности.

Оцените статью
Добавить комментарий

Adblock detector