Какую модель лампы изобрел яблочков

И Яблочков, и Лодыгин были «временными» эмигрантами. Они не собирались покидать родину навсегда и, достигнув успеха в Европе и Америке, вернулись обратно. Просто Россия во все времена «стопорила», как сегодня модно говорить, инновационные разработки, и порой проще было поехать во Францию или США и там «продвинуть» свое изобретение, а потом триумфально вернуться домой известным и востребованным специалистом. Это можно назвать технической эмиграцией — не из-за нищеты или нелюбви к родным разбитым дорогам, а именно с целью оттолкнуться от заграницы, чтобы заинтересовать собой и родину, и мир.

Судьбы этих двух талантливых людей очень похожи. Оба родились осенью 1847 года, служили в армии на инженерных должностях и почти одновременно уволились в близких чинах (Яблочков — поручика, Лодыгин — подпоручика). Оба в середине 1870-х сделали важнейшие изобретения в области освещения, развивали их в основном за границей, во Франции и США. Правда, позже их судьбы разошлись.

Итак, свечи и лампы.

Первым делом стоит заметить, что Александр Николаевич Лодыгин не изобрел лампу накаливания. Как не сделал этого и Томас Эдисон, которому Лодыгин в итоге продал ряд своих патентов. Формально пионером использования для освещения раскаленной спирали стоит считать шотландского изобретателя Джеймса Боумана Линдси. В 1835 году в городе Данди он провел публичную демонстрацию освещения пространства вокруг себя с помощью раскаленной проволоки. Он показывал, что такой свет позволяет читать книги без применения привычных свечей. Однако Линдси был человеком множества увлечений и светом больше не занимался — это был лишь один из череды его «фокусов».

А первую лампу со стеклянной колбой в 1838 году запатентовал бельгийский фотограф Марселлен Жобар. Именно он ввел ряд современных принципов лампы накаливания — откачал из колбы воздух, создав там вакуум, применил угольную нить и так далее. После Жобара было еще много электротехников, внесших свой вклад в развитие лампы накаливания, — Уоррен де ла Рю, Фредерик Маллинс (де Молейнс), Жан Эжен Робер-Уден, Джон Веллингтон Старр и другие. Робер-Уден, к слову, вообще был иллюзионистом, а не ученым — лампу он спроектировал и запатентовал в качестве одного из элементов своих технических трюков. Так что к появлению на «ламповой арене» Лодыгина все уже было готово.

Родился Александр Николаевич в Тамбовской губернии в семье знатной, но небогатой, поступил, как многие дворянские отпрыски того времени, в кадетский корпус (сперва в подготовительные классы в Тамбове, затем — в основное подразделение в Воронеже), служил в 71-м Белевском полку, учился в Московском юнкерском пехотном училище (ныне — Алексеевское), а в 1870-м ушел в отставку, потому что душа его к армии не лежала.

В училище он готовился по инженерной специальности, и это сыграло не последнюю роль в его увлечении электротехникой. После 1870-го Лодыгин плотно занялся работой над совершенствованием лампы накаливания, а заодно вольнослушателем посещал Петербургский университет. В 1872 году он подал заявку на изобретение под названием «Способ и аппараты электрического освещения» и двумя годами позже получил привилегию. Впоследствии он запатентовал свое изобретение в других странах.

Что же изобрел Лодыгин?

Лампочку накаливания с угольным стержнем. Вы скажете — так ведь еще Жобар использовал подобную систему! Да, безусловно. Но Лодыгин, во-первых, разработал намного более совершенную конфигурацию, а во-вторых, догадался, что вакуум — не идеальная среда и увеличить КПД и срок службы можно, наполнив колбу инертными газами, как делается в подобных лампах сегодня. Именно в этом был прорыв мирового значения.

Он основал компанию «Русское товарищество электрического освещения Лодыгин и К°", был успешен, работал над множеством изобретений, в том числе, кстати, над водолазным оборудованием, но в 1884-м был вынужден покинуть Россию по политическим причинам. Да, из-за них уезжали во все времена. Дело было в том, что смерть Александра II от бомбы Гриневицкого привела к массовым облавам и репрессиям в среде сочувствующих революционерам. В основном это была творческая и техническая интеллигенция — то есть общество, в котором вращался Лодыгин. Уехал он не от обвинений в каких-либо противоправных действиях, а скорее от греха подальше.

До того он уже работал в Париже, а теперь перебрался в столицу Франции жить. Правда, созданная им за рубежом компания довольно быстро разорилась (бизнесменом Лодыгин был очень сомнительным), и в 1888 году он переехал в США, где устроился на работу в Westinghouse Electric («Вестингауз электрик»). Джордж Вестингауз привлекал к своим разработкам ведущих инженеров со всего мира, порой перекупая их у конкурентов.

В американских патентах Лодыгин закрепил за собой первенство в разработке ламп с нитями накаливания из молибдена, платины, иридия, вольфрама, осмия и палладия (не считая многочисленных изобретений в других сферах, в частности патента на новую систему электрических печей сопротивления). Вольфрамовые нити используются в лампочках и сегодня — по сути, Лодыгин в конце 1890-х придал лампе накаливания окончательный вид. Триумф ламп Лодыгина пришелся на 1893 год, когда компания Вестингауза выиграла тендер на электрификацию Всемирной выставки в Чикаго. По иронии судьбы позже, перед отъездом на родину, патенты, полученные в США, Лодыгин продал вовсе не Вестингаузу, а General Electric Томаса Эдисона.

В 1895 году он снова переехал в Париж и там женился на Алме Шмидт, дочери немецкого эмигранта, с которой познакомился в Питтсбурге. А еще спустя 12 лет Лодыгин с женой и двумя дочерьми вернулся в Россию — всемирно известным изобретателем и электротехником. У него не было проблем ни с работой (он преподавал в Электротехническом институте, ныне СПбГЭТУ «ЛЭТИ»), ни с продвижением своих идей. Он занимался общественно-политической деятельностью, работал над электрификацией железных дорог, а в 1917-м с приходом новой власти снова уехал в США, где его приняли весьма радушно.

Пожалуй, Лодыгин — это настоящий человек мира. Живя и работая в России, Франции и США, он везде добивался своего, везде получал патенты и внедрял свои разработки в жизнь. Когда в 1923 году он умер в Бруклине, об этом написали даже газеты РСФСР.

Именно Лодыгина можно назвать изобретателем современной лампочки в большей мере, нежели любого из его исторических конкурентов. Но вот основоположником уличного освещения был вовсе не он, а другой великий русский электротехник — Павел Яблочков, не веривший в перспективы ламп накаливания. Он шел своим путем.

Как отмечалось выше, жизненные пути у двух изобретателей были сперва схожи. По сути, можно просто скопировать часть биографии Лодыгина в этот подраздел, заменив имена и названия учебных заведений. Павел Николаевич Яблочков тоже родился в семье мелкопоместного дворянина, учился в Саратовской мужской гимназии, затем — в Николаевском инженерном училище, откуда вышел в чине инженера-подпоручика и отправился служить в 5-й саперный батальон Киевской крепости. Служил он, правда, недолго и менее чем через год вышел в отставку по здоровью. Другое дело, что на гражданском поприще толковой работы не нашлось, и еще через два года, в 1869-м, Яблочков вернулся в армейские ряды и для повышения квалификации был откомандирован в Техническое гальваническое заведение в Кронштадте (ныне — Офицерская электротехническая школа). Именно там он всерьез заинтересовался электротехникой — заведение готовило военных специалистов для всех связанных с электричеством работ в армии: телеграфа, систем подрыва мин и так далее.

В 1872 году 25-летний Яблочков окончательно ушел в отставку и начал работу над собственным проектом. Он справедливо считал лампы накаливания бесперспективными: действительно, на тот момент они были тусклыми, энергозатратными и не слишком долговечными. Куда больше Яблочкова интересовала технология дуговых ламп, которую в самом начале XIX века независимо друг от друга стали разрабатывать двое ученых — русский Василий Петров и англичанин Гемфри Дэви. Оба они в одном и том же 1802 году (хотя относительно даты «презентации» Дэви есть разночтения) представили перед высшими научными организациями своих стран — Королевским институтом и Петербургской академией наук — эффект свечения дуги, проходящей между двух электродов. На тот момент практического применения этому явлению не было, но уже в 1830-х начали появляться первые дуговые лампы с угольным электродом. Наиболее известным инженером, разрабатывавшим такие системы, был англичанин Уильям Эдвардс Стейт, получивший ряд патентов на угольные лампы в 1834 — 1836 годах и, что главное, разработавший важнейший узел подобного устройства — регулятор расстояния между электродами. В этом крылась основная проблема угольной лампы: по мере того как электроды выгорали, расстояние между ними увеличивалось, и их нужно было сдвигать, чтобы дуга не погасла. Патенты Стейта использовались как базовые множеством электротехников по всему миру, а его лампы освещали ряд павильонов на Всемирной выставке 1851 года.

Читать также:  Стулья из металла фото

Яблочков же задался целью исправить основной недостаток дуговой лампы — необходимость обслуживания. Около каждой лампы должен был постоянно присутствовать человек, подкручивающий регулятор. Это сводило на нет преимущества и яркого света, и относительной дешевизны изготовления.

В 1875 году Яблочков, так и не найдя применения своим умениям в России, уехал в Париж, где устроился инженером в лабораторию знаменитого физика Луи-Франсуа Бреге (его дед основал часовую марку Breguet) и сдружился с его сыном Антуаном. Там в 1876 году Яблочков получил первый патент на дуговую лампу без регулятора. Суть изобретения состояла в том, что длинные электроды располагались не концами друг к другу, а рядом, параллельно. Они были разделены слоем каолина — материала инертного и не позволяющего дуге возникнуть по всей длине электродов. Дуга появлялась только на их концах. По мере выгорания видимой части электродов каолин плавился и свет спускался вниз по электродам. Горела такая лампа не более двух-трех часов — но зато невероятно ярко.

«Свечи Яблочкова», как прозвали новинку журналисты, снискали сумасшедший успех. После демонстрации ламп на лондонской выставке сразу несколько компаний выкупили у Яблочкова патент и организовали массовое производство. В 1877 году первые «свечи» загорелись на улицах Лос-Анджелеса (американцы купили партию сразу после публичных демонстраций в Лондоне, еще до серийного производства). 30 мая 1878 года первые «свечи» зажглись в Париже — около Оперы и на площади Звезды. Впоследствии лампы Яблочкова освещали улицы Лондона и ряда американских городов.

Как же так, спросите вы, они же горели всего два часа! Да, но это было сравнимо со временем «работы» обычной свечи, и при этом дуговые лампы были невероятно яркими и более надежными. И да, фонарщиков требовалось много — однако не больше, чем для обслуживания повсеместно использовавшихся газовых фонарей.

Но подступали лампы накаливания: в 1879 году британец Джозеф Суон (впоследствии его компания сольется с компанией Эдисона и станет крупнейшим осветительным конгломератом в мире) поставил около своего дома первый в истории фонарь уличного освещения с лампой накаливания. За считаные годы эдисоновские лампы сравнялись по яркости со «свечами Яблочкова», имея при том значительно более низкую стоимость и время работы 1000 часов и более. Короткая эпоха дуговых ламп завершилась.

В целом это было логично: безумный, невероятный взлет «русского света», как называли «свечи Яблочкова» в США и Европе, не мог продолжаться долго. Падение стало еще более стремительным — уже к середине 1880-х годов не осталось ни одного завода, который производил бы «свечи». Впрочем, Яблочков работал над различными электросистемами и пытался поддерживать свою былую славу, ездил на конгрессы электротехников, выступал с лекциями, в том числе в России.

Окончательно он вернулся в 1892 году, причем потратив сбережения на выкуп собственных же патентов у европейских правообладателей. В Европе его идеи уже были никому не нужны, а на родине он надеялся найти поддержку и интерес. Но не сложилось: к тому времени из-за многолетних экспериментов с вредными веществами, в частности с хлором, здоровье Павла Николаевича начало стремительно ухудшаться. Подводило сердце, подводили легкие, он перенес два инсульта и скончался 19 (31) марта 1894 го- да в Саратове, где жил последний год, разрабатывая схему электрического освещения города. Ему было 47 лет.

Возможно, если бы Яблочков дожил до революции, он повторил бы судьбу Лодыгина и уехал бы во второй раз — теперь уже навсегда.

Сегодня дуговые лампы получили новую жизнь — по этому принципу работает ксеноновое освещение во вспышках, автомобильных фарах, прожекторах. Но значительно более важным достижением Яблочкова является то, что он первым доказал: электрическое освещение общественных пространств и даже целых городов — возможно.

Успехи электрического освещения и заслуги П. Н. Яблочкова

(«Наука и жизнь» №39, 1890 год)

Конечно, все читатели знают имя П. Н. Яблочкова, изобретателя электрической свечи. С каждым днём всё более выдвигается на очередь вопрос об электрическом освещении городов и больших зданий, и в этом деле имя Яблочкова занимает одно из выдающихся мест среди электротехников. Помещая в этом номере журнала его портрет, скажем несколько слов о жизни русского изобретателя, сущности и значении его изобретения.

Какую модель лампы изобрел яблочков

Павел Николаевич Яблочков родился в 1847 году и первоначальное образование получил в Саратовской гимназии. По окончании в ней курса он поступил в Николаевское инженерное училище, где окончил с чином подпоручика, и затем был зачислен в один из батальонов Киевской сапёрной бригады. Вскоре он был сделан начальником телеграфа на Московско-Курской железной дороге и здесь-то основательно изучил все тонкости электротехники, что и дало ему возможность сделать изобретение, наделавшее столько шума, — электрическую свечу.

Чтобы уяснить значение этого изобретения, скажем несколько слов о системах электрического освещения.

Все приборы для электрического освещения можно разделить на две главные группы: 1) приборы, основанные на принципе вольтовой дуги, и 2) лампы с накаливанием.

Чтобы произвести свет накаливанием, электрический ток пропускают через весьма дурные проводники, которые поэтому сильно накаливаются и издают свет. Лампы с накаливанием можно разделить на два отдела: а) накаливание производится при доступе воздуха (лампы Ренье и Вердемана); б) накаливание производится в пустоте. В лампах Ренье и Вердемана ток идёт через цилиндрический уголёк; так как при доступе воздуха уголь быстро сгорает, то эти лампы весьма неудобны и нигде не применяются. Теперь употребляются исключительно лампы с накаливанием в пустоте, устройство коих, в общем, очень просто. Концы проволок соединяются посредством угольной нити и вставляются в стеклянную колбочку или пузырёк, из коего воздух выкачивается с помощью ртутного насоса почти до совершенной пустоты. Здесь достигается та выгода, что угольная нить (обыкновенно очень тонкая) хотя и накаливается весьма сильно, но может служить до 1200 и более часов, почти не сгорая, вследствие отсутствия воздуха. Все системы ламп с накаливанием в пустоте отличаются одна от другой лишь способом обработки угольной нити и формой, которую придают нитям. В лампе Эдисона нити получаются из обугленных волокон бамбукового дерева, сами же нити сгибаются в виде буквы U. В лампе Свана нити готовятся из хлопчатой бумаги и загибаются петлёй в полтора оборота. В лампе Максима нити делаются из обугленного бристольского картона и сгибаются в виде буквы М. Жерар готовит нити из прессованного кокса и сгибает их под углом. Крюто осаждает уголь на тонкую платиновую нить и т. д.

Лампы с вольтовой дугой основаны на всем известном из физики явлении вольтовой дуги, которое Гумфри Дэви впервые наблюдал ещё в 1813 году. Пропуская через два угля ток от 2000 цинкомедных пар, он получил между концами углей огненный язык дугообразной формы, которому и дал название вольтовой дуги. Для её получения необходимо сначала сблизить концы углей до соприкосновения, так как иначе дуги не будет, какова бы ни была сила тока; угли удаляются друг от друга лишь тогда, когда концы их накалятся. Это первое и весьма важное неудобство вольтовой дуги. Ещё более важное неудобство возникает при дальнейшем горении. Если ток постоянный, то тот уголь, который соединён с положительным полюсом, расходуется вдвое более, чем другой уголь, соединённый с отрицательным полюсом. Кроме того, на конце положительного угля образуется углубление (называемое кратером), а отрицательный сохраняет острую форму. При вертикальном расположении углей положительный уголь всегда ставят вверху, чтобы пользоваться лучами, отражёнными от вогнутой поверхности кратера (иначе лучи, идя вверх, пропадали бы). При переменном токе оба угля сохраняют острую форму и сгорают одинаково, но зато здесь нет отражения от верхнего угля, а потому этот способ менее выгоден.

Отсюда ясно видны недостатки систем с вольтовой дугой. Перед зажиганием таких ламп необходимо сблизить концы углей, а затем во всё время горения переставлять концы углей, по мере их сгорания. Словом, чуть не к каждой лампе требовалось приставить по человеку для наблюдения за горением. Ясно, что такая система совершенно непригодна для освещения, например, целых городов и даже больших зданий. Для уничтожения этих неудобств множество изобретателей занялись придумыванием механических регуляторов, так чтоб угли сами собой сближались по мере сгорания, не требуя надзора человека. Было придумано много весьма остроумных регуляторов (Серрена, Жаспара, Сименса, Грамма, Бреша, Уэстона, Канса и т. д.), но все они не много помогали делу. Во-первых, они были чрезвычайно сложны и хитроумны, во-вторых, всё-таки мало достигали цели и были очень дороги.

Читать также:  Подключение 380 вольт ноль и заземление

В то время как все придумывали лишь разные тонкости в регуляторах, г. Яблочкову пришла в голову гениальная мысль, в то же время настолько простая, что просто удивительно, как это раньше никто не напал на неё. Насколько просто открывался ларчик, видно из следующей схемы:

а_______б в_______г д_______е ж_______з

аб—вг — старая система вольтовой дуги; электрический ток шёл через а и г, дуга была между б и в; задача изобретателей была в том, чтобы регулировать расстояние между б и в, которое менялось соответственно силе тока, качеству и размерам углей аб и вг, и т. д. Очевидно, что задача была хитрая и сложная, где не обойтись без тысячи винтов и т. д.

Какую модель лампы изобрел яблочков

Правая половина схемы представляет гениальное решение задачи, сделанное Яблочковым. Он расположил угли параллельно; ток входит через концы д и ж. Угли де и жз разъединены слоем непроводника; следовательно, вольтова дуга получается между концами е и з. Очевидно, что если межуточный слой из горючего материала (непроводящего электричество) и если ток переменный, то концы е и з будут сгорать равномерно, пока все угольные пластинки де и жз не догорят до конца. Не нужно никаких регуляторов, никаких приспособлений — ларчик открывался более чем просто! Но ведь главная примета всякого гениального изобретения именно в том и состоит, что оно очень просто.

Какую модель лампы изобрел яблочков

Как и следовало ожидать, в России отнеслись к изобретению Яблочкова недоверчиво, и он должен был ехать за границу. Первый опыт в больших размерах был сделан 15 июня 1877 года в Лондоне, во дворе West-India-Docks. Опыты удались блестяще, и вскоре имя Яблочкова облетело всю Европу. В настоящее же время множество зданий в Париже, Лондоне и т. д. освещаются по системе Яблочкова. В настоящее время в Петербурге существует крупное «Товарищество электрического освещения и изготовления электрических машин и аппаратов в России» под фирмой П. Н. Яблочков-изобретатель и Ко (между прочим, товарищество берётся за устройство передвижения лодок и вагонов посредством аккумуляторов; адрес правления: С.-Петербург, Обводной канал, № 80). В настоящее время г. Яблочков сделал многие усовершенствования своей системы, и его свечи ныне таковы.

Диаметр углей — 4 миллиметра; изолирующее (межуточное) вещество носит название коломбин. Первоначально коломбин изготовлялся из каолина (фарфоровой глины), а ныне его заменили смесью равных частей сернокислой извести и сернокислого барита, которая весьма легко отливается в формы, а при температуре вольтовой дуги превращается в пары.

Выше уже было сказано, что при зажигании концы углей надо соединить. У Яблочкова концы углей в свече разъединены коломбином, и, следовательно, предстояло решить задачу относительно соединения их. Он решил её очень просто: концы свечей обмакиваются в угольное тесто, которое быстро сгорает и зажигает свечу, которая продолжает гореть уже при посредстве коломбина.

Само собой разумеется, что для свечей Яблочкова требуется переменный ток, чтобы оба угля горели равномерно.

Одним из важных недостатков системы Яблочкова было то, что свечи было необходимо часто менять, когда они сгорали. Теперь и этот недостаток устранён — устройством подсвечников на несколько свечей. Лишь только догорает первая свеча, загорается вторая, затем третья и т. д. Для освещения Лувра (в Париже) г. Кларио придумал к системе Яблочкова особый автоматический коммутатор.

Свечи Яблочкова превосходны при освещении мастерских, верфей, магазинов, железнодорожных станций и т. д. В Париже, кроме Лувра, по системе Яблочкова освещаются магазины «du Printemps», Континентальная гостиница, Ипподром, мастерские Фарко, Гуэна, завод в Иври и т. д. В Москве по этой же системе освещаются площадь у храма Христа Спасителя и Каменный мост, многие фабрики и заводы и т. д.

В заключение нельзя ещё раз не припомнить истории этого изобретения без чувства крайней горечи. Как это ни прискорбно, но в России нет места русским изобретателям, пока они не получат заграничного клейма. Изобретатель остроумнейшего способа электрической спайки металлов, г. Бенардос, долго и безуспешно толкался в двери русских капиталистов, пока не добился успеха в Париже. Яблочков и поныне «прозябал бы в неизвестности», если бы не побывал в Лондоне и Париже. Даже Бабаев получил клеймо годности в Америке.

Нет пророка в своём отечестве. Эти слова как нельзя лучше резюмируют жизнь изобретателя Павла Яблочкова. По уровню научно-технического прогресса Россия второй половины XIX века в некоторых областях заметно отставала от ведущих европейских стран и США. Поэтому соотечественникам было легче поверить, что всё гениальное и передовое приходит издалека, нежели рождается в умах учёных, работающих рядом с ними.

Какую модель лампы изобрел яблочков

Когда Яблочков изобрёл дуговую лампу, он первым делом хотел найти ей применение в России. Но никто из русских промышленников не воспринял изобретение всерьёз, и Яблочков отправился в Париж. Там он усовершенствовал конструкцию при поддержке местного инвестора, и успех пришёл почти сразу.

После марта 1876 года, когда Яблочков получил патент на свою лампу, «свечи Яблочкова» стали появляться на главных улицах европейских столиц. Пресса Старого Света возносит нашего изобретателя. «Россия — родина электричества», «Вы должны видеть свечу Яблочкова» — такими заголовками пестрят европейские газеты того времени. La lumiere russe («русский свет» — так лампы Яблочкова называли французы) стремительно распространялся по городам Европы и Америки.

Вот он — успех в современном понимании. Павел Яблочков становится знаменитым и богатым человеком. Но люди того поколения мыслили иначе — и далеко не понятиями житейского успеха. Заграничная слава была не тем, к чему стремился русский изобретатель. Поэтому после завершения Русско-турецкой войны он совершил неожиданный для нашего современного восприятия поступок. Выкупил у французской компании, которая инвестировала его работы, за один миллион франков (!) право применять своё изобретение в родной стране и отправился в Россию. К слову, колоссальная сумма в миллион франков — это и было всё состояние, накопленное Яблочковым за счёт популярности его изобретения.

Яблочков думал, что после европейского успеха его будет ждать тёплый приём и на родине. Но он ошибся. К изобретению Яблочкова теперь относились, конечно, с бoльшим интересом, чем до его отъезда за границу, но промышленники и на этот раз были не готовы по достоинству оценить свечу Яблочкова.

К моменту публикации материала о Яблочкове в дореволюционной «Науке и жизни» la lumiere russe начал тускнеть. В России дуговые лампы так и не получили широкого распространения. В передовых странах у них появился серьёзный конкурент — лампа накаливания.

Почему лампа накаливания победила?

Дуговые лампы — предшественники ламп накаливания — светили очень ярко, но обладали малым электрическим сопротивлением. Это требовало большой силы тока и весьма постоянного режима напряжения. Поэтому изначально каждую дуговую лампу снабжали электричеством от отдельного источника: параллельное соединение нескольких ламп считалось невозможным, так как выключение или расстройство одной лампы выводило из строя остальные. Кроме того, для питания нескольких десятков параллельно включённых ламп требовались подводящие провода неимоверной толщины.

Одним из первых эту проблему решил Яблочков. Он заменил постоянный ток на переменный и ввёл в цепь конденсаторы и трансформаторы. Когда свою долговечную лампу накаливания в качестве конкурента дуговой лампе предложил Лодыгин, Яблочков не принял её за серьёзного соперника. Но лампа Эдисона уже была воспринята иначе. Если первые угольные лампы накаливания имели сопротивление 1–4 Ом, то Эдисон увеличил этот показатель в несколько десятков раз. Так была решена проблема дробления электрического света.

Разработка ламп накаливания велась с начала XIX века. Одним из основоположников этого направления был англичанин Деларю, который ещё в 1809 году получал свет, пропуская ток через платиновую спираль. Позже наш соотечественник — отставной офицер Александр Лодыгин — создал лампу накаливания с несколькими угольными стержнями — при сгорании одного автоматически включался другой. Путём постоянной доработки Лодыгину удалось поднять ресурс своих ламп с получаса до нескольких сотен часов. Именно он одним из первых стал откачивать воздух из баллона лампы. Талантливый изобретатель Лодыгин был неважным предпринимателем, поэтому в истории электрического освещения ему принадлежит довольно скромная роль, хотя сделал он, несомненно, очень много.

Самым же известным персонажем в истории электричества стал Томас Алва Эдисон. И следует признать, что слава к американскому изобретателю пришла заслуженно. После того как в 1879 году Эдисон начал заниматься разработкой лампы накаливания, он провёл тысячи экспериментов, израсходовав на исследовательскую работу более 100 тысяч долларов — фантастическая сумма по тем временам. Инвестиции оправдались: Эдисон создал первую в мире лампу накаливания с продолжительным сроком работы (около 1000 часов), подходящую для серийного производства. При этом Эдисон подошёл к делу системно: помимо самой лампы накаливания он разработал в подробностях системы электрического освещения и централизованного электроснабжения.

Читать также:  Узоры для лобзика электрического по дереву

Что же касается Яблочкова, то в последние годы жизни он вёл довольно скромную жизнь: пресса о нём забыла, не обращались к нему и предприниматели. На смену грандиозным проектам обустройства мировых столиц пришла более скромная работа по созданию системы электроосвещения в Саратове — городе, где прошла его юность и где он жил теперь. Здесь Яблочков и умер в 1894 году — безвестным и небогатым.

Долгое время считалось, что дуговые лампы Яблочкова — тупиковая ветвь в области эволюции искусственного освещения. Однако в какой-то момент яркость дуговых ламп оценили автомобильные компании. Свеча Яблочкова возродилась на новом технологическом уровне — в виде газоразрядных ламп. Ксеноновые лампы, которые устанавливаются в фары современных автомобилей, — это в некотором роде сильно усовершенствованная свеча Яблочкова.

Как Яблочков изобрел ламп очку

и стория электрической лампочки накаливания представляет собой целую цепь открытий, сделанных разными людьми в разное время. И Эдисон тут внёс весомую лепту, и Лодыгин, и Яблочков, который справедливо считается одним из её первооткрывателей.
А, кроме того, обязательно надо вспомнить выдающегося русского физика Василия Петрова, ещё в 1802 году наблюдавшего явление электрической дуги — яркого разряда, что возникает между сведёнными на определённое расстояние угольными стержнями-электродами. Следовало бы помнить и имена В. Чиколева и А. Шпаковского, также внесших свой вклад в это выдающееся изобретение.
Однако мы остановимся подробнее на Павле Николаевиче Яблочкове. Ведь именно с ним связана одна из самых любопытных и поучительных "изобретательских" историй.
. Официант, мигом возникший у столика в маленьком парижском кафе, принял немудрёный заказ и исчез на кухне. Посетитель же в ожидании рассеянно достал из кармана блокнот, положил его на стол, взялся за карандаш. Одна из страниц была испещрена замысловатыми рисунками. Непосвящённый ничего бы в них не понял — множество каких-то палочек, попарно соединявшихся тонкими дугами. Да ещё наброски чертежей неких механизмов с маленькими, как в часах, шестерёнками. А соседствующие с рисунками пояснения тем более остались бы загадочными для парижанина, потому что сделаны были на чужом языке.
Посетитель кафе склонился над записями, забыв, где он, и глубоко задумался.
Происходило это в 1876 году, когда герою нашего рассказа Павлу Яблочкову едва минуло двадцать девять лет. Позади учёба в Петербургском военном училище, где он и увлёкся физикой, и в особенности столь мало ещё изученной её областью — электричеством. Он успел уже послужить в должности начальника телеграфа только-только построенной Московско-Курской железной дороги. Но это занятие отнимало много времени, и Яблочков его оставил, дабы посвятить себя тому, что считал главным в жизни — разработке надёжной конструкции электрической дуговой лампы.
Судьба занесла его в Париж, поскольку к его опытам на родине, в России, никто не проявлял особого интереса. Здесь же одна из французских фирм предоставила изобретателю мастерскую. И вот уже который месяц Яблочков бился над решением, которое казалось где-то совсем рядом, да всё ускользало.
Опыты Василия Петрова показывали: электрическая дуга, дающая яркий свет, возникает лишь тогда, когда концы горизонтально расположенных угольных электродов находятся друг от друга на строго определённом расстоянии. Чуть оно уменьшается или увеличивается, разряд пропадает. Между тем во время разряда угли выгорают, так что зазор между ними всё время растёт. И чтобы применить угли в электрической дуговой лампе, требовалось придумать специальный механизм-регулятор, который бы постоянно, с определённой скоростью подвигал выгорающие стержни навстречу друг другу. Тогда дуга не погаснет.
Справедливости ради надо сказать, что такие попытки предпринимались и до Яблочкова. Свои дуговые лампы с регуляторами разработали русские изобретатели Шпаковский и Чиколев. Электрические лампы Шпаковского в 1856 уже горели в Москве на Красной площади во время коронации Александра II. Чиколев же использовал мощный свет электрической дуги для работы мощных морских прожекторов. Придуманные этими изобретателями автоматические регуляторы имели отличия, но сходились в одном — были ненадёжны. Лампы горели совсем недолго, а стоили дорого.
Ясно, что требовался иной механизм — простой и безотказный. Над ним-то и бился Павел Яблочков который месяц, о нём только и думал — и у себя в мастерской, и бродя по парижским улочкам, и вот даже здесь, в кафе.
Часовой механизм, что использовался в лампочке Шпаковского, не мог предусмотреть всех "капризов" неравномерно выгорающего угля. Нужно что-то другое. Но что?

Какую модель лампы изобрел яблочков

. Пришёл официант с подносом, Яблочков убрал со стола блокнот. И, продолжая думать о своём, машинально смотрел, как тот ставит блюдо, как кладёт ложку, вилку, нож.
И вдруг. Яблочков резко поднялся из-за стола и пошёл к выходу, не слыша окликов опешившего официанта. Он торопился к себе в мастерскую. Вот оно наконец, решение! Простейшее и абсолютно надёжное! Нашёл! Оно пришло к нему, едва он глянул на лежащие рядом, параллельно друг другу, столовые приборы.

Да, именно так надо расположить в лампе угольные электроды — не горизонтально, как во всех прежних конструкциях, а параллельно! Тогда оба будут выгорать совершенно одинаково, и расстояние между ними всегда будет постоянным. И никакие хитроумные регуляторы тут не нужны!
. Уже в следующем году "электрическая свеча" Яблочкова ярко осветила парижский универсальный магазин "Лувр". Конструкция её была совершенно не похожа на все предыдущие: два угольных стержня были разделены изолирующим слоем каолина. Укреплены они были на простой подставке, напоминающей подсвечник. Сгорали электроды равномерно, и лампа давала яркий свет, причём достаточно продолжительное время. Такую "электрическую свечу" и изготовить было просто, и стоила она дёшево. Неудивительно, что она начала победное шествие по белу свету. Уже через год лампочки русского изобретателя зажглись на набережных Темзы в Лондоне, потом в Берлине. Вскоре Яблочков вернулся в Россию, и его "свеча" озарила Петербург.

Какую модель лампы изобрел яблочков

Конечно, тот официант, которого однажды удивил странный посетитель, и не подозревал, что стал как бы соавтором изобретения. Но кто знает, не положи он тогда перед Яблочковым столь аккуратно нож и ложку, может, и не осенила бы изобретателя молниеносная догадка. Правда, "подсказка" официанта нашла, как говорится, благодатную почву. Ведь Яблочков искал своё решение даже здесь, за столиком кафе, дожидаясь заказа. Не будь такого, ничего, кроме грамотной сервировки стола, взгляд посетителя не отметил бы.
Со временем "свеча Яблочкова" была вытеснена более экономичными и удобными лампами накаливания, в которых яркий свет даёт раскалённая электричеством тонкая нить. Это новшество связано с именем

Александра Лодыгина. Именно он догадался выкачивать воздух из стеклянной колбочки, ему принадлежит идея заменить тонкую нить из угля на металлическую — из молибдена или вольфрама. Эдисон же придумал патрон для лампочки и изобрёл совершенный насос, который позволял откачивать воздух из колбы почти до вакуума.
А "свеча Яблочкова" стала теперь музейным экспонатом с интересной историей его создания. Она как бы напоминает нам, что великие открытия посещают только подготовленные умы.

Вернувшись на родину, в Петербург, Яблочков организовал "Товарищество электрического освещения П.Н. Яблочков-изобретатель и К o " и электромеханический завод. В 1879 году "свеча Яблочкова" была опробована для электрического освещения Одесской улицы, Литейного моста и площади перед Александринским театром.

11 (23) июля 1873 года были проведены первые опыты электрического освещения улиц (на Одесской улице). Довольно удаленное от центра место было выбрано из чисто технических соображений. Значительно больший общественный резонанс имел второй опыт электрического уличного освещения на площади у Александринского театра в 1879 году.

14 (26) апреля 1879 года, на площади у Александринского театра был проведен второй опыт уличного электрического освещения. Проект уличного освещения разработал П.Н. Яблочков. Толпы народа собирались посмотреть на это "чудо". Среди прочего, зрителям демонстрировался опыт одновременного зажигания и тушения четырех фонарей. Сто девятнадцать лет спустя мы с вами не видим в этом ничего удивительного. Однако, петербуржцы конца XIX века уже давно привыкли к виду фонарщика с лестницей, по очереди зажигавшего газовые или керосиновые фонари. Поэтому одновременное зажигание и тушение фонарей было сенсацией и имело шумный успех. Весной того же года "свечами Яблочкова" был в опытном порядке освещен Дворцовый мост, а затем постоянное электрическое освещение было устроено на Литейном мосту.

Оставить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *