К контрольно измерительному инструменту относятся

Обработка дерева и металла

Правильность заданных чертежом размеров и формы деталей в процессе их изготовления проверяют штриховым (шкальным) измерительным инструментом, а также поверочными линейками, плитами и пр.

Поэтому кроме типового, набора рабочего инструмента слесарь должен иметь необходимый (ходовой) контрольно-измерительный инструмент. К нему относятся: масштабная линейка, рулетка, кронциркуль и нутромер, штангенциркуль, угольник, малка, транспортир, угломер, поверочная линейка и т. п.

Масштабная линейка имеет штрихи-деления, расположенные друг от друга на расстоянии 1, 0,5 и иногда 0,25 мм. Эти деления и составляют измерительную шкалу линейки. Для удобства расчета размеров каждое полусантиметровое деление шкалы отмечается удлиненным штрихом, а каждое сантиметровое — еще более удлиненным штрихом, над которым проставляется цифра, указывающая число сантиметров от начала шкалы. Масштабной линейкой производят измерения наружных и внутренних размеров и расстояний с точностью до 0,5 мм, а при наличии опыта — и до 0,25 мм. Масштабные линейки изготовляют жесткими или упругими, с длиной шкалы 100, 150, 200, 300, 500, 750 и 1000 мм, шириной 10—25 мм и толщиной 0,3—1,5 мм, из углеродистой инструментальной стали марки У7 или У8.

Приемы измерения масштабной линейкой показаны на рис. 1, а.

Рулетка представляет собой стальную ленту, на поверхности которой нанесена шкала с ценой деления 1 мм. Лента заключена в футляр и втягивается в него либо пружиной (самосвертывающиеся рулетки, рис. 1,6), либо вращением рукоятки (простые рулетки, рис. 1,в), либо вдвигается вручную (желобчатые рулетки, рис. 1,г). Самосвертывающиеся и желобчатые рулетки изготовляются с длиной шкалы 1 и 2 м, а простые— с длиной 2, 5, 10, 20, 30 и 50 м. Рулетки применяются для измерения линейных размеров: длины, ширины, высоты деталей и расстояний между их отдельными частями, а также длин дуг и окружностей и кривых.

Измеряя окружность цилиндра, вокруг него плотно обертывают стальную ленту рулетки. При этом деление шкалы, совпадающее с нулевым делением ленты, указывает нам длину измеряемой окружности. Такими приемами пользуются обычно при необходимости определить длину развертки или диаметр большого цилиндра, если непосредственное измерение его затруднено.

К контрольно измерительному инструменту относятся

Для переноса размеров на масштабную линейку и контроля размеров деталей в процессе их изготовления пользуются кронциркулем и нутромером.

Кронциркуль применяется для измерения наружных размеров деталей: диаметров, длин, толщин буртиков, стенок и т. п. Он состоит из двух изогнутых по большому радиусу ножек длиной 150—200 мм, соединенных шарниром (рис. 1,5), При измерении кронциркуль берут правой рукой за шарнир и раздвигают его ножки так, чтобы их концы касались проверяемой детали и перемещались по ней с небольшим усилием. Размер детали определяют наложением ножек кронциркуля на масштабную линейку.

Более удобным является пружинный кронциркуль (рис. 1,е). Ножки такого кронциркуля под давлением кольцевой пружины стремятся разойтись, но гайка, навернутая на стяжной винт, укрепленный на одной ножке и свободно проходящий сквозь другую, препятствует этому. Вращением гайки по винту с мелкой резьбой устанавливают ножки на размер, который ,не может измениться произвольно.

Точность измерения кронциркулем 0,25—0,5 мм. Изготовляют его из углеродистой инструментальной стали У7 или У8, а измерительные концы на длине 15—20 мм закаливают.

Нутромер служит для измерения внутренних размеров: диаметров отверстий, размеров пазов, выточек и т. п. На рис. 1,5 и е показаны обыкновенный и пружинный нутромеры. В отличие от кронциркуля он имеет прямые ножки с отогнутыми губками. Устройство нутромера аналогично устройству кронциркуля.

При измерении диаметра ножки нутромера разводят до легкого касания со стенками детали и затем вводят в отверстие отвесно. Замеренный размер отверстия будет соответствовать действительному только в том случае, когда нутромер не будет перекошен, т. е. линия, проходящая через концы ножек, будет перпендикулярной оси отверстия. Отсчет размера производится по измерительной линейке; при этом одну ножку нутромера упирают в плоскость, к которой под прямым углом прижата торцовая грань измерительной линейки, и производят по ней отсчет размера.

Изготовляют нутромеры из углеродистой инструментальной стали У7 или У8 с закалкой измерительных концов на длине 15—20 мм.

Точность измерений, которую можно получить с помощью масштабной линейки, складного метра или рулетки, далеко не всегда удовлетворяет требованиям современного машиностроения. Поэтому при изготовлении ответственных деталей машин пользуются более совершенными масштабными инструментами, позволяющими определять размеры с повышенной точностью. К таким инструментам в первую очередь относится штангенциркуль.

Штангенциркуль широко используется в машиностроении для измерения наружных и внутренних размеров, глубин, буртиков и высот деталей. Универсальность, простота отсчета, доступность и широкий диапазон измерения позволяют использовать штангенциркуль на разных работах. Конструкции выпускаемых промышленностью штангенциркулей дают возможность производить отсчет размеров с точностью до 0,1 и 0,05 мм. Штангенциркули , с точностью отсчета размеров до 0,02 мм в настоящее время не выпускаются.

На рис. 2, а изображен универсальный штангенциркуль с пределами измерения от 0 до 125 мм и величиной отсчета по нониусу 0,1 мм.

Штангенциркуль состоит из штанги, на которой нанесена шкала линейки. Штанга выполнена заодно с губками. По штанге перемещается рамка с губками рамки. Непосредственно на рамке нанесена шкала нониуса. При сомкнутых губках инструмента деления линейки и шкалы нониуса точно совпадают. Измеряемую деталь слегка зажимают между губками штангенциркуля, фиксируют рамку зажимным винтом, а затем по шкалам штанги и нониуса производят отсчет размера. Измерение глубины осуществляется с помощью глубиномера. В зависимости от количества делений нониуса действительные размеры детали можно определять с точностью 0,1—0,05 мм. Например, если шкала нониуса (рис. 2,6) длиной 9 мм разделена на 10 равных частей, то, следовательно, каждое деление нониуса равно 9: 10 = 0,9 мм, т. е. короче деления на линейке на 1,0—0,9 = 0,1 мм. При плотно сдвинутых губках штангенциркуля нулевой штрих нониуса совпадает с нулевым штрихом штанги, а десятый штрих нониуса — с девятым штрихом штанги. При такой (так называемой нулевой) установке губок штангенциркуля первое деление нониуса не дойдет до первого деления линейки-штанги на 0,1 мм, второе — на 0,2 мм, третье — на 0,3 мм и т. д. Если передвинуть рамку таким образом, чтобы первый штрих нониуса совпал с первым штрихом штанги, то зазор между губками будет равен 0,1 мм. При совпадении, например,“шестого штриха нониуса с любым штрихом штанги зазор будет равен 0,1 мм и т. д. Для отсчета действительного размера по штангенциркулю количество целых миллиметров нужно взять по шкале штанги до нулевого штриха нониуса, а количество десятых долей миллиметра — по нониусу, определив, какой штрих нониуса совпадает со штрихом основной шкалы.

К контрольно измерительному инструменту относятся

Следует отметить, что производство штангенциркулей с длиной шкалы нониуса 9 мм, деленной на 10 равных частей, промышленностью прекращено, однако в учебных целях штангенциркулем с указанным нониусом пользуются.

Согласно ГОСТ у 166-63 инструментальная промышленность нашей страны выпускает штангенциркули следующих типов:

ШЦ-1 — с двусторонним расположением губок—для наружных и внутренних измерений и с линейкой для измерения глубин (рис. 2,а); пределы измерения от 0 до 125 мм; точность отсчета по нониусу 0,1 мм;

ШЦ-П — с двусторонним расположением губок — для наружных и внутренних измерений и для разметки; пределы измерения от 0 до 200 и от 0 до 320 мм; точность отсчета по нониусу 0,1 и 0,05 мм;

ШЦ-Ш — с односторонним расположением губок; пределы измерения 0—500, 250—710, 320—1000, 500— 1400 и 800—2000 мм. Точность отсчета по нониусу 0,1 и 0,05 мм, а также штангенциркуль с устройством для разметки (ТУ 2-034-803-69) с пределами измерения 1500—3000 и 2000—4000 мм. Точность отсчета по нониусу 0,1 мм.

У штангенциркуля ШЦ-I шкала нониуса сделана более крупной и имеет длину 19 мм (рис. 2,б). Такая шкала более удобна для отсчета, так как каждое деление нониуса равно не 0,9, а 1,9 мм. Принцип определения размера с точностью 0,1 мм при этом не изменяется. Точность отсчета 0,1 мм в ряде случаев бывает недостаточной. Для более точного отсчета шкалу нониуса де-л ют длиной 39 мм и делят ее на 20 частей; тогда цена одного деления нониуса составит 39:20=1,95 мм. Таким образом, если на линейке штанги нанесена обычная миллиметровая шкала, то первый штрих нониуса будет «отставать» от второго штриха линейки на 0,05 мм, второй штрих нониуса от четвертого штриха линейки — на 0,05X2 = 0,1 мм и т. д.

Штангенинструменты с точностью отсчета по нониусу 0,05 мм относятся к измерительным инструментам повышенной точности. Они имеют установочное приспособление—микрометрическое устройство, позволяющее точно регулировать перемещение рамки с подвижной губкой и быстро устанавливать заданный размер.

Читать также:  Сушилка для дерева из контейнера

Более подробно о штангенинструментах повышенной точности см. гл. II, § 17.

Инструменты для проверки углов. В машиностроении наиболее распространенным инструментом для проверки и разметки прямых углов и для контроля взаимно перпендикулярного расположения деталей являются стальные угольники с углом 90° ( ГОСТ 3749-65), а также малки, транспортиры, угломеры, шаблоны и др.

К контрольно измерительному инструменту относятся

Угольники с углом 90° бывают различных размеров, цельные или составные (рис. 3).

Угольники изготовляют трех классов точности: 0, 1 и 2. Наиболее точные угольники — класса 0. Точные угольники с фасками называются лекальными (рис. 3,а, б). Для проверки прямых углов угольник накладывают на проверяемую деталь и определяют правильность обработки проверяемого угла на просвет. При проверке наружного угла угольник накладывают на деталь его внутренней частью (рис. 3,в), а при проверке внутреннего угла — наружной частью. Наложив угольник одной стороной на обработанную сторону детали, слегка прижимая его, совмещают другую сторону угольника с обрабатываемой стороной детали и по образовавшемуся просвету судят о точности выполнения прямого угла (рис. 3,г). Иногда размер просвета определяют с помощью щупов. Необходимо следить за тем, чтобы угольник устанавливался в плоскости, перпендикулярной к линии пересечения плоскостей, образующих прямой угол (рис. 3,5). При наклонных положениях угольника (рис. 3, е, ж) возможны ошибки замеров.

К контрольно измерительному инструменту относятся

Простая малка (рис. 4,а) состоит из обоймы и линейки, закрепленной шарнирно между двумя планками обоймы. Шарнирное крепление обоймы позволяет линейке занимать по отношению к обойме положение под любым углом. Малку устанавливают на требуемый угол по образцу детали или по угловым плиткам. Требуемый угол фиксируется винтом с барашковой гайкой.

Простая малка служит для измерения (переноса) одновременно только одного угла.

Универсальная малка служит для одновременного переноса двух или трех углов.

Двойная малка состоит из двух линеек (рис. 4,б), соединенных шарнирно с рычагом. Конец линейки срезан под углом 45°, а концы линейки — под углом 30 и 60°. Линейка и рычаг имеют продольные прорези, по которым перемещается винт; винт может быть закреплен в различных местах прорези.

При измерении углов линейки двойной малки устанавливают под углом, который требуется проверить (рис. 4,в). Если необходимо проверить сразу два-три угла, то рычаг также устанавливают под нужным углом. Когда малка установлена на определенный угол и винты закреплены, ее накладывают на деталь и просматривают на свет, наблюдая, совпадают ли грани линеек малки с поверхностями детали или нет. В процессе проверки не следует сильно нажимать малкой на деталь, так как этим можно сбить установку линеек. Если при наложении малки на деталь между гранями линеек и поверхностями детали заметны просветы, это значит, что деталь изготовлена неправильно.

Малка особенно удобна в тех случаях, когда по готовой (образцовой) детали требуется изготовить ряд других, подобных ей. В этом случае малку устанавливают по образцовой детали, а все новые детали проверяют по этой установке.

С помощью угольников и малки можно лишь проверить правильность выполнения заданных углов, но судить о величине отклонения нельзя.

Угольники и малки изготовляют из углеродистых инструментальных сталей У7 и У8 с последующей закалкой.

Для измерения или разметки углов, для настройки малок или определения величины перенесенных ими углов пользуются угломерными инструментами с независимым углом. К таким инструментам относятся транст портиры и угломеры.

Транспортиры обычно применяются для измерения и разметки углов на плоскости. Угломеры бывают простые и универсальные.

Простой угломер состоит из линейки и транспортира (рис. 4,г). При измерениях угломер накладывают на деталь так, чтобы линейка и нижняя часть полки транспортира совпадали со сторонами измеряемой детали. Величину угла определяют по указателю, перемещающемуся по шкале транспортира вместе с линейкой. Простым угломером можно измерять величину углов с точностью 0,5—1°.

Оптический угломер состоит из корпуса (рис. 4,5), в котором закреплен стеклянный диск со шкалой, имеющей деления в градусах и минутах. Цена малых делений. С корпусом жестко скреплена основная (неподвижная) линейка. На диске смонтированы лупа, рычаг и укреплена подвижная линейка. Под лупой параллельно стеклянному диску расположена небольшая стеклянная пластинкй, на которой нанесен указатель, ясно видимый через окуляр. Линейку можно перемещать в продольном направлении и с помощью рычага закреплять в нужном положении. Во время поворота линейки в ту или другую сторону будут вращаться в том же направлении диск и лупа. Таким образом, определенному положению линейки будет соответствовать вполне определенное положение диска и лупы. После закрепления линеек зажимным кольцом, наблюдая через лупу, производят отсчет показаний угломера.

Оптическим угломером можно измерять углы от 0 до 180°. Допускаемые погрешности показания оптического угломера ±5’.

Поверочные линейки служат для проверки плоскостей на прямолинейность. В процессе обработки плоскостей чаще всего пользуются лекальными линейками. Они подразделяются на линейки лекальные с двусторонним скосом, трехгранные и четырехгранные (рис. 5, а).

Лекальные линейки изготовляют с высокой точностью, они имеют тонкие ребра с радиусом закругления 0,1—0,2 мм, благодаря чему можно весьма точно определить отклонение от прямолинейности по способу световой щели (на просвет). Для этого линейку своим ребром устанавливают на проверяемую поверхность детали против света (рис. 5,6). Имеющиеся отклонения от прямолинейности будут при этом заметны между линейкой и поверхностью детали. При хорошем освещении можно обнаружить отклонение от прямолинейности величиной от 0,005 до 0,002 мм. Лекальные линейки изготовляют длиной от 25 до 500 мм из углеродистой инструментальной или легированной стали с последующей закалкой.

Хранение измерительного инструмента и уход за ним. Точность и долговечность инструмента зависят не только от качества изготовления и умелого обращения, но также и от правильного хранения и ухода за ним.

К контрольно измерительному инструменту относятся

Простейший измерительный инструмент хранится обычно в ящике верстака, где его располагают в определенном порядке по типам инструмента и размерам. Штангенциркули и лекальные линейки хранятся в специальных футлярах с закрывающимися крышками. Для предохранения инструмента от ржавчины его смазы-мают тонким слоем чистого технического вазелина, предварительно хорошо протерев сухой тряпкой. Перед употреблением инструмента смазка удаляется чистой тряпкой или промыванием в бензине.

При появлении пятен ржавчины инструмент необходимо положить на сутки в керосин, после чего промыть бензином, насухо протереть и снова смазать.

Для контроля геометрических размеров сварных соединений, швов, деталей, изделий использую: универсальный шаблон сварщика (УШС-3); штангенциркуль; линейку.

Универсальный шаблон сварщика УШС-3 предназначен для контроля элементов разделки под сварной шов, электродов и элементов сварного соединения. Позволяет проводить контроль глубины раковин, забоин, превышения кромок, глубины разделки стыка до корневого слоя, высоту усиления шва, контроль зазора, притупления шва, ширины сварного шва, углов скоса кромок, а также диаметров электродов.

К контрольно измерительному инструменту относятся

Параметры шкал УШС-3:

· материал – нержавеющая сталь;

· цена деления шкал Г и Е: 1 мм;

· цена деления шкалы: 0,5 мм;

· цена деления шкалы Д: 5°;

· допускаемые отклонения ширины пазов: до 3,25 мм – по Н12, свыше 3,25 мм – по Н14;

· отклонение положения штрихов шакал Г, И: не более ± 0,5;

· отклонение положения шкалы Д от действительного значения угла: не более 2,5°;

· отклонение от номинального значения расстояния между любым штрихом и началом шкалы Е: не более ± 0,15;

Перед началом работы промыть шаблон в бензине по ГОСТ 1012-72 и протереть чистой тканью.

Измерения проводить следующим образом:

· Для контроля глубины дефектов (вмятин, забоин), превышения кромок, глубины разделки стыка до корневого слоя и высоты усиления шва, шаблон установить на образующую поверхность изделия плоскостью А. повернуть движок 2 вокруг оси 4 до соприкосновения конца указателя 3 с измеряемой поверхностью (поверхность вмятины, кромки шва и т.д.). Снять отчет по шкале Г с помощью риски К.

· Контроль притупления и ширины шва производить с помощью шкалы Е, пользуясь ею как измерительной линейкой.

· Для контроля величины зазора между свариваемыми деталями ввести клиновую часть движка 2 в контролируемый зазор до упора. Снять отчет по шкале И.

· Для контроля углов скоса кромок установить шаблон плоскостью Б на образующую поверхность изделия. Повернуть движок 2 до совмещения плоскости В движка с измеряемой поверхностью. Снять отчет по шкале Д основания, пользуясь плоскостью В движка как индексом.

· Для определения диаметра электродов (электродной проволоки) его вставляют в пазы Ж шаблона, используя пазы как калибры-скобы.

Читать также:  Дровокол гидравлика своими руками

· Контроль глубины дефектов шва: 0 – 15 мм.

· Контроль высоты усиления шва: 0 – 5 мм.

· Контроль зазора: 0,5 – 4 мм.

· Контроль величины притупления и ширины шва: 0 – 50 мм.

· Контроль углов скоса кромок: 0 – 45°.

· Контроль диаметров электродов: 1,0 / 1,2 / 2,0 / 2,5 / 3,0 / 3,25 / 4,0 / 5,0.

Штангенциркуль.

Штангенциркуль является наиболее распространенным измерительным инструментом. При помощи штангенциркуля, можно производить обмеры с точностью до 0,1мм; он состоит из следующих частей; штанги 4 (т. Е. сравнительно толстой стальной линейки) со шкалой 6, цена деления которой равна 1мм на левом конце штанги имеются губки 1 нижняя и верхняя; на штангу надета рамка 2, обхватывающая ее сверху, снизу и с задней стороны. Левой частью рамки являются две губки 3, имеющие такую же форму,, как и губки

К контрольно измерительному инструменту относятся

Рамка может свободно передвигаться по штанге и в любом положении может

быть застопорена. Для этой цели служит зажим 3 рамки. Передние верхняя и

нижняя части поверхности рамки скошены; на нижней части

имеется 10 делений; цена каждого деления равна 1,9мм. Такая шкала с

делениями называется нониусом 7.

С задней стороны к рамке наглухо приделана узенькая стальная линейка,

называемая линейкой глубиномера 5.

Для более точного обмера рабочие кромки верхних губок, так же как и

нижние части рабочих кромок нижних губок, заострены. При любом

положении рамки расстояния между рабочими кромками верхних и нижних

губок и длина выдвинутой части линейки глубиномера всегда равны между

собой, те. А = b = с.

Линейка металлическая.

К контрольно измерительному инструменту относятся

Линейка металлическая FIT плоская предназначена для измерения и разметки линейных размеров. С ее помощью легко определить длину, ширину, и отмерить необходимое расстояние. Характеристики:

 Минимальный шаг измерения: 0,1 см

 Размер линейки: 102 см x 0,1 см x 3 см.

Заключение

В МУП «Глазовские теплосети» каждое место сварщика оснащено оборудованием, необходимым для выполнения слесарных операций, дуговой и газовой сварки. Во время производственной практики установил деловые контакты с мастером, наставником и передовыми рабочими, приобретая производственный опыт. Повысил и усовершенствовал умения и навыки по своей профессии, освоил общие и профессиональные компетенции.

ПК 1.1. Выполнять типовые слесарные операции, применяемые при подготовке металла к сварке.

ПК 1.2. Подготавливать газовые баллоны, регулирующую и коммуникационную аппаратуру для сварки и резки.

ПК 1.3. Выполнять сборку изделий под сварку.

ПК 1.4. Проверять точность сборки.

ОК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес

ОК 2. Организовывать собственную деятельность, исходя из цели и способов её достижения, определённых руководителем

ОК 3. Анализировать рабочую ситуацию, осуществлять текущий и итоговый контроль, оценку и коррекцию собственной деятельности, нести ответственность за результаты своей

ОК 4. Осуществлять поиск информации, необходимой для эффективного выполнения профессиональных задач.

ОК 5. Использовать информационно – коммуникационные технологии в профессиональной деятельности.

ОК 6. Работать в команде, эффективно общаться с коллегами, руководством.

ОК 7. Исполнять воинскую обязанность, в том числе с применением

полученных профессиональных знаний.

Используемая литература

1. Виноградов В.С. Электрическая дуговая сварка. – М.: Академия, 2010

2. Галушкина В.Н. Технология производства сварных конструкций. – М.: Академия, 2010.

3. Овчинников В.В. Электросварщик на автоматических и полуавтоматических машинах. – М.: Академия, 2010.

4. Чернышов Г.Г. Сварочное производство. Сварка и резка металлов. – М.: Академия, 20010.

Дата добавления: 2018-08-06 ; просмотров: 381 ; ЗАКАЗАТЬ РАБОТУ

К простейшим измерительным инструментам относятся масштабная линейка, кронциркуль, нутромер.

Масштабная линейка предназначена для измерения плоских поверхностей, а также для определения размеров, замеренных нутромером или кронциркулем. Масштабные линейки изготовляются разной длины от 100 до 1000 мм. Цена деления масштабной линейки — 0,5 или 1 мм, для облегчения отсчета каждые 5 и 10 мм отмечаются удлиненными штрихами. Нулевое деление у большинства линеек наносится у левого торца. При измерении линейку прикладывают к измеряемой детали так, чтобы нулевой штрих точно совпадал с началом измеряемой линии. На рис. 13 показаны приемы измерения масштабной линейкой.

К контрольно измерительному инструменту относятся

Рис. 13. Приемы измерения масштабной линейкой

Кронциркуль служит для измерения наружных размеров деталей. Величина, измеренная кронциркулем, определяется затем наложением кронциркуля на масштабную линейку. Кронциркуль, как и простейший нутромер, используют редко.

Нутромер применяется для измерения внутренних размеров деталей. Измеренная величина определяется также по масштабной линейке.

Штангенциркуль относится к многомерным раздвижным измерительным инструментам (рис. 14,а). Предназначен он для измерения наружных и внутренних размеров и разметки.

К контрольно измерительному инструменту относятся

Рис. 14. Штангенциркуль (а), примеры отсчета размера и чтение замеров с точностью 0,1 мм (б, в, г)

Штангенциркуль состоит из штанги с жестко укрепленными на ней губками, рамки с губками, перемещающейся по штанге, устройства для микрометрической подачи, состоящего из движка, стопорного винта, гайки и винта.

Перемещение рамки осуществляют следующим образом. Движок 6 закрепляется стопорным винтом, а стопорный винт рамки отпускается. После этого вращением гайки винт и связанную с ним рамку медленно перемещают. Штангенциркуль имеет нониус.

Штангенциркули выпускают с точностью измерения 0,1; 0,05 и 0,02 мм. Последние два имеют микрометрическую подачу, позволяющую устанавливать штангенциркуль с высокой точностью. Крайние левые штрихи нониуса и штанги называются нулевыми и при сомкнутых губках они совпадают. Для определения измеряемого размера при разведенных губках штангенциркуля отсчитывают целое число миллиметров, которое прошел по штанге левый нулевой штрих нониуса, а затем находят штрих нониуса, который точно совпал с каким-либо делением шкалы штанги. Порядковое число этого деления определяет доли миллиметра, которые следует прибавить к целому числу миллиметров. При измерении внутренних размеров к величине отсчета, произведенного по основной шкале и нониусу, следует прибавить толщину губок, которая указана на них. Примеры отсчета показаны на рис. 14, б, в, г.

Штангенглубино-мер (рис. 15,а) служйт для измерения глубины отверстий, пазов на валах и т. п. Измерение штанген-глубиномером производится так же, как штангенциркулем.

Штангензубомер (рис. 15, б) применяют для измерения толщины зубьев колес. Штангензубомер представляет собой комбинированный измерительный инструмент, состоящий из двух неподвижных штанг, составляющих единое целое, и двух подвижных нониусов. Вертикальный нониус предназначен для установки высоты, на которой должна замеряться толщина зуба, а горизонтальный — для измерения толщины зуба на данной высоте. Точность измерения штангензубомера 0,02 мм.

Микрометр служит для измерений наружных размеров деталей с точностью до 0,01 мм. Наиболее распространенными являются микрометры со следующими пределами измерений: от 0 до 25 мм, от 25 до 50 мм, от 50 до 75 мм и от 75 до 100 мм.

Микрометр (рис. 16) имеет скобу, в которую запрессована закаленная и отшлифованная пятка, микрометрический винт, стопор, стебель, барабан и трещотку.

К контрольно измерительному инструменту относятся

Рис. 15. Штангенглубиномер (а), штангензубомер (б):
1 — стопорный винт, 2 — движок, 3 — микрометрический винт, 4 — гайка

К контрольно измерительному инструменту относятся

Рис. 16. Микрометр

Трещотка соединена с барабаном храповичком, отжимаемым пружиной, а на скошенном по окружности левом конце барабана нанесено 50 делений. Микрометрический винт имеет резьбу с шагом 0,5 мм, следовательно, за один оборот винта его конец перемещается на 0,5 мм, а при повороте барабана на одно деление винт перемещается на 0,01 мм. На поверхности стебля имеются деления с осевым штрихом.

К контрольно измерительному инструменту относятся

Рис. 17. Микрометрический нутромер (а), удлинитель к нему (б)

Для измерения детали ее устанавливают между микрометрическим винтом и пяткой, после чего при помощи трещотки повертывают барабан и выдвигают винт до соприкосновения с деталью. Когда винт упрется в измеряемую деталь, трещотка будет свободно провертываться, а винт с барабаном остановятся. Для определения измеряемого размера нужно сосчитать число миллиметров на шкале стебля, включая пройденное отсчетным штрихом полумиллиметровое деление (0,5), а затем посмотреть, какое число на скошенной части барабана совпадает с осевым штрихом стебля. Это число будет соответствовать сотым долям миллиметра, которые нужно прибавить к предыдущим данным.

К контрольно измерительному инструменту относятся

Рис. 18. Микрометрический глубиномер

К контрольно измерительному инструменту относятся

Рис. 19. Угольники

Микрометрический нутромер (рис. 17) применяют для определения внутренних размеров деталей с точностью до 0,01 мм. Микрометрический нутромер состоит из микрометрического винта (рис. 17,а),барабана, гильзы со стопорным винтом, наконечника со сферической измерительной поверхностью. С правой стороны микрометрического винта также имеется сферическая измерительная поверхность. Отсчет размеров производится так же, как и при измерении микрометром.

Микрометрический нутромер имеет комплект удлинителей, которые расширяют пределы измерений. На одном конце удлинителя нарезана внутренняя резьба (рис. 17, б), а на другом конце — наружная резьба. Конец удлинителя с внутренней резьбой навинчивается на стебель нутромера, а конец удлинителя с наружной резьбой служит для навинчивания на него дополнительного удлинителя с целью увеличения пределов измерения.

Читать также:  Подающий механизм для полуавтомата своими руками

К контрольно измерительному инструменту относятся

Рис. 20. Универсальный угломер системы Семенова

К контрольно измерительному инструменту относятся

Рис. 21. Угломер УГ-2

Микрометрический глубиномер (рис. 18) служит для измерения несквозных отверстий и углублений с точностью до 0,01 мм. Он состоит из основания, барабана, трещотки, нониуса, стопора, измерительного стержня. Принцип измерения глубиномером и микрометром один и тот же.

Для измерения углов, а также определения точности опиловки плоскостей по «просвету» применяют угольники и универсальные угломеры. Угольники (рис. 19) обычно изготовляют из стали.

Угломер УГ-1 (рис.20) системы Семенова является универсальным, предназначенным для измерения наружных углов. Он состоит из основания, на котором имеется шкала от 0 до 120°, жестко соединенного с линейкой, подвижной линейки, хомутика, съемного угольника, нониуса и устройства микрометрической подачи.

Угломер УГ-2 (рис. 21) состоит из основания, линейки основания, сектора, угольника, съемной линейки, хомутиков и нониуса. Этим угломером можно измерять наружные и внутренние углы.

По основной шкале угломеров отсчитывают градусы, а по шкале нониуса — минуты.

Предельные калибры для измерения отверстий изготовляют в виде двусторонних цилиндров (рис. 22) и называют калибрами-пробками, а для измерения валов — в виде односторонних и двусторонних скоб, называемых калибрами-скобами (рис. 23,а, б). Предельными калибрами можно определить наибольший и наименьший допускаемые размеры деталей.

У предельных калибров одна сторона называется проходной, а другая — непроходной. Проходная сторона калибра-пробки служит для измерения наименьшего отверстия, а непроходная — для наибольшего. Калибром-скобой, наоборот, наибольший размер вала определяют проходной стороной, а наименьший — непроходной. При измерении проходная сторона калибра должна свободно проходить в отверстие или по валу под действием веса калибра. Непроходная сторона калибра не должна совсем проходить в отверстие или по валу. Если непроходная сторона калибра проходит, то деталь бракуется.

Радиусные шаблоны применяют для измерения радиусов закруглений изделий.

Такие шаблоны изготовляют в виде тонких стальных пластин с выпуклыми или вогнутыми закруглениями. На шаблонах выбиты цифры, показывающие размер радиуса закругления в миллиметрах.

Щупы. Для измерения величины зазоров между деталями применяют щупы (рис. 24), которые представляют собой стальные пластины различной толщины. На каждой пластине указана ее толщина в миллиметрах.

Контроль резьбы осуществляют резьбовыми калибрами-пробками, резьбовыми кольцами и шаблонами.

Резьбовые калибры-пробки (рис. 25, а) служат для проверки резьбы гаек. Они изготовляются из инструментальной стали и похожи на болт с точным профилем резьбы. Проверка резьбы гайки производится путем навертывания ее на проходную или непроходную сторону ка-либра-пробки.

Резьбовые кольца (рис. 25, б) применяют для проверки резьбы болтов п представляют собой гайку с точным профилем резьбы. Проверка резьбы болта производится ввертыванием его в резьбовое кольцо. Одно кольцо является проходным, а второе — непроходным калибром.

Резьбомер (рис. 26) предназначен для проверки и определения шага резьбы на болтах, гайках и других деталях. Он представляет собой набор стальных пластинок — резьбовых шаблонов с профилями зуба, соответствующими профилям стандартных метрических или дюймовых резьб. В резьбомерах обычно на одном конце делается набор шаблонов с метрической резьбой, а на другой — с дюймовой. На каждом шаблоне нанесены размеры резьбы.

К контрольно измерительному инструменту относятся

Рис. 22. Контроль размера двусторонним калибром-пробкой

К контрольно измерительному инструменту относятся

Рис. 23. Двусторонняя (а) и односторонняя (б) калибры-скобы

К контрольно измерительному инструменту относятся

Рис. 25. Резьбовые пробки (а) резьбовое кольцо (б)

Для проверки резьбы на болте или в гайке нужно прикладывать последовательно шаблоны разьбомера до тех пор, пока не будет найден шаблон, зубья которого точно совпадут с резьбой детали без просвета. Размеру этого шаблона и будет соответствовать измеряемая резьба.

Индикатор предназначен для измерения отклонений размеров от заданных, а также для обнаружения овальности и конусности валов и отверстий. В ремонтном деле наиболее широко применяют индикатор часового типа, устройство которого показано на рис. 27.

В корпусе индикатора расположен механизм, состоящий из шестерен, зубчатой рейки, спиральной пружины, гильзы, измерительного стержня с наконечником, указателя числа оборотов, шкалы со стрелкой. На большой шкале индикатора нанесено 100 делений, каждое из которых соответствует 0,01 мм. При перемещении измерительного стержня на величину 0,01 мм стрелка переместится по окружности на одно деление большой шкалы, а при перемещении стержня на 1 мм стрелка сделает один оборот. Шкалу индикатора устанавливают в нулевое положение вращением ее за ободок.

Перед измерением изделия индикатор укрепляют в кронштейне универсальной стойки (рис. 28) так, чтобы наконечник измерительного стержня прикасался к поверхности измеряемого изделия. Далее за ободок 5 устанавливают нулевое деление шкалы против стрелки (рис. 27). После этого изделие или индикатор медленно перемещают. По показаниям стрелки на шкале индикатора определяют величину отклонения.

К контрольно измерительному инструменту относятся

К контрольно измерительному инструменту относятся

Рис. 26. Резьбомер

К контрольно измерительному инструменту относятся

Рис. 27. Индикатор часового типа:
1 — измерительный стержень, 2 —гильза, 3, 10, 11, 13 — шестерни, 4 — шкала, 5 — ободок, 6 — корпус, 7 — стрелка, 8 — указатель числа оборотов, 9 —спиральная пружина, 12 — пружина, 14 — измерительный наконечник

К контрольно измерительному инструменту относятся

Рис. 28. Индикатор с универсальной стойкой:
1 — собственно индикатор, 2 — шарнирный рычаг, 3 — стойка, 4 — основание

К контрольно измерительному инструменту относятся

Рис. 29 Индикаторный нутромер

Индикаторный нутромер (рис.29) применяют для измерения диаметров цилиндров двигателей. Полный оборот стрелки индикатора соответствует изменению размера А на 1 мм. Так как шкала имеет 100 делений, то цена деления шкалы равна 0,01 мм. Стрелку индикатора устанавливают на нуль поворотом ободка. К индикатору прилагается набор сменных наконечников, которые позволяют измерять цилиндры различных диаметров.

Оптические измерительные приборы. К измерительным приборам, основанным на оптических принципах измерения, относятся оптиметры, инструментальные микроскопы, различные измерительные машины.

Пневматические приборы служат для измерения наружных и внутренних поверхностей точных деталей, а также для определения чистоты обработки поверхности. Пневматические приборы работают на сжатом воздухе, который подается компрессором. Достоинством таких приборов является простота их устройства и обслуживания.

Электрические измерительные приборы дают возможность производить измерения с высокой точностью. Такие приборы основаны на электроконтактном, емкостном и индуктивном методах измерения.

Ошибки при измерении и их причины. При измерении деталей всегда получается некоторая разница между действительным размером детали и размером, полученным в результате измерения. Разность между величиной, полученной при измерении, и действительной величиной называется ошибкой или погрешностью измерения.

Основными причинами погрешностей измерения являются следующие:
– неточная установка измеряемой детали или измерительного инструмента;
– ошибки при отсчете показаний инструмента, возникающие в тех случаях, когда наблюдение при отсчете показаний ведется под неправильным углом зрения. Необходимо всегда вести наблюдение в направлении, перпендикулярном плоскости шкалы;
– нарушение температурных условий, при которых должны производиться измерения. Государственным стандартом Для измерения предусмотрена нормальная температура, равная 20 °С. В практике часто измеряемая деталь имеет более низкую температуру, чем температура измерительного инструмента, это тоже приводит к погрешностям, так как известно, что металлы при изменении температуры изменяют свои размеры. При охлаждении они сжимаются, а при нагревании расширяются. При нагревании на 1 °С на длине 1 м металлы удлиняются на следующие величины (мм): сталь — 0,012, чугун — 0,010, бронза — 0,018, латунь — 0,019, алюминий — 0,024;
– грязная поверхность измеряемой детали или грязный;
– измерительный инструмент;
– погрешности измерительного инструмента;
нарушение постоянства измерительного усилия, на которое рассчитан измерительный инструмент.

Хранение измерительных инструментов и уход за ними. Измерительные инструменты хранят в сухих теплых помещениях. Нельзя хранить инструменты в сырых помещениях или в помещениях с резкими колебаниями температуры, так как это повлечет за собой коррозию инструментов. Каждый инструмент должен иметь свое место.

Простейшие инструменты хранят в шкафах, на стеллажах или подвешивают на стенах. Сложные инструменты, например микрометры, штангенциркули, калибры и т. п., хранят в специальных футлярах.

Для предохранения от коррозии измерительные инструменты смазывают бескислотным вазелином или костяным маслом. Для длительного хранения инструмент обертывают промасленной бумагой в целях предохранения его от загрязнения и воздействия влажного воздуха. Перед работой мерительные поверхности инструмента промывают бензином и протирают чистой тряпкой, а после окончания работы снова протирают, затем смазывают и укладывают на свое место.

Необходимо регулярно проверять измерительные инструменты при помощи точных контрольных приборов.

Оставить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *