Хим оксидирование стали технология

Содержание

Оксидирование – процесс формирования оксидных пленок на поверхности металла. Оксидирование применяется для нанесения оксидных слоев, как в целях защиты, так и для придания металлическому изделию декоративных свойств.

Оксидирование металла можно проводить несколькими способами:

— анодное оксидирование (электрохимическое);

— пламенные методы (микродуговое оксидирование и др.).

Химическое оксидирование

Химическое оксидирование осуществляют обработкой изделия в растворах (расплавах) окислителей (хроматы, нитраты и др.). С помощью данного метода поверхность изделия пассивируют либо нанося защитные и декоративные слои. Для черных металлов химическое оксидирование проводится при температуре от 30 до 100 °С в щелочных либо кислотных составах. Для кислотного оксидирования используют, в основном, смесь нескольких кислот, например, азотная (или ортофосфорная) и соляная кислоты с некоторыми добавками (Ca(NO3)2, соединения Mn). Щелочное оксидирование проводится при температурах немного выше, около 30 – 180 °С. В состав вводят окислители. После нанесения оксидного слоя металлические изделия хорошо промываются и сушатся. Иногда готовое покрытие промасливают или дополнительно обрабатывают в окислительных растворах.

Защитные слои, полученные с применением химического оксидирования, обладают менее защитными свойствами, чем пленки, полученные анодированием.

Термическое оксидирование

Термическое оксидирование – процесс образования оксидной пленки на металле при повышенных температурах и в кислородсодержащих (может быть водяной пар) атмосферах. Термическое оксидирование проводят в нагревательных печах. При термическом оксидировании низколегированных сталей либо железа (операция называется воронение) температуру поднимают до 300 – 350 °С. Для легированных сталей термическое оксидирование проводится при более высоких температурах ( до 700 °С). Продолжительность процесса – около 60 минут. Очень часто термическое оксидирование применяют для создания оксидного слоя на поверхности изделий из кремния. Такой процесс проводится при высоких температурах (800 – 1200 °С). Применяются оксидированные кремниевые изделия в электронике.

Анодирование (электрохимическое или анодное оксидирование)

Анодирование — один из способов получения оксидной пленки. Анодирование проводят в жидких либо твердых электролитах. При анодировании поверхность металла, который окисляется, имеет положительный потенциал. Анодирование применяют для получения защитных и декоративных слоев на поверхностях различных металлов и сплавов.

Анодирование наиболее часто применяют для получения покрытия на алюминии и его сплавах. На алюминии получают слои с защитными, изоляционными, износостойкими, декоративными свойствами.

Плазменные методы нанесения оксидных слоев

Плазменное оксидирование проводят при низких температурах в плазме, которая содержит кислород. Плазма для данного вида оксидирования образуется при помощи разрядов постоянного тока, СВЧ, ВЧ разрядов.

Плазменное оксидирование применяют для получения оксидных слоев на различных полупроводниковых соединениях, поверхности кремния. Плазменным оксидированием можно повысить светочувствительность секребряно-цезиевых фотокатодов.

Микродуговое оксидирование

Микродуговое оксидирование (МДО) – метод получения многофункциональных оксидных слоев. Микродуговое оксидирование – походная от анодирования. Позволяет наносить слои с высокими защитными, коррозионными, теплостойкими, изоляционными, декоративными свойствами. По внешнему виду покрытие, полученное микродуговым способом, очень напоминает керамику.

Сейчас это один из самых перспективных и востребованных способов нанесения оксидных слоев, т.к. позволяет наносить сверхпрочные покрытия с уникальными характеристиками.

Процесс микродугового оксидирования ведется, в большинстве случаев, в слабощелочных электролитах при подаче импульсного либо переменного тока. Перед нанесением покрытия не требуется особой подготовки поверхности. Особенностью процесса является то. Что используется энергия от электрических микроразрядов, которые хаотично передвигаются по обрабатываемой поверхности. Эти микроразряды оказывают на покрытие и электролит плазмохимическое и термическое воздействие. Оксидный слой приблизительно на 70 % формируется вглубь основного металла. Только 30 % покрытия находится полностью снаружи изделия.

Толщина покрытий, полученных микродуговым способом, составляет около 200 – 250 мкм (достаточно толстое). Температура электролита может колебаться от 15 до 400 °С, и это не оказывает на процесс особого влияния.

Применяемые электролиты не оказывают вредного влияния на окружающую среду и их срок службы очень долгий. Оборудование – компактное, не занимает много места и просто в эксплуатации.

Рассеивающая способность используемых электролитов высока, что позволяет получать покрытия даже на сложнорельефных деталях.

Микродуговое оксидирование применяется для формирования покрытий в основном на магниевых и алюминиевых сплавах.

Оксидирование алюминия и алюминиевых сплавов

Для эффективной защиты алюминия от коррозии наилучшим способом является создание на его поверхности оксидных слоев. Для этого применяют химическое, электрохимическое либо микродуговое оксидирование.

Анодирование (анодное оксидирование) алюминия

Покрытие может применяться как самостоятельная защита от атмосферной коррозии алюминия и его сплавов, или же, как основа под покраску. Оксидная пленка легок растворима в щелочах, но обладает достаточно высокой стойкостью в некоторым минеральным кислотам и воде.

Состав защитного слоя на алюминии: аморфный оксид алюминия, кристаллическая γ-модификация Al2O3.

Твердость оксидного слоя: на техническом алюминии — порядка 5000 – 6000 МПа, на сплавах алюминиевых от 2000 до 5000 МПа.

Слои, полученные методом оксидировании, отличаются хорошими электроизоляционными свойствами. Удельное электросопротивление составляет 1014 – 1015 Ом·м.

Анодированием можно получать на алюминии слои с различными заранее заданными свойствами. Можно получать твердые и мягкие защитные слои, безпористые, пористые, эластичные, хрупкие. Различные свойства получают при варьировании составом электролита и режимами электролиза.

При оксидировании алюминия в нейтральных или кислых электролитах (в большинстве растворов) поверхность алюминия почти моментально покрывается толстым слоем оксидов.

При электрохимическом оксидировании сначала образуется тонкий слой окислов, а потом кислород, проникает сквозь этот слой, упрочняя и утолщая его. Окисный слой достигает толщины около 0,01 – 0,1 мкм и прекращает свой рост. Этот слой называется барьерным. Для продолжения роста окислов необходимо увеличить напряжение на ванне.

Некоторые электролиты способны растворять оксид алюминия. Если электролит не растворяет оксидную пленку – она достигает толщины, отвечающей заданному напряжению. Это около 1 — 2 мкм. Такие пленки используются при производстве электрических конденсаторов, т.к. они не имеют пор, обладают хорошими электроизоляционными свойствами.

При использовании электролитов, способных растворять оксидный слой, утолщение пленки зависит от двух процессов, которые протекают на аноде:

— растворения пленки под воздействием электролита;

— электрохимического окисления металла у основания пор.

Если скорость окисления алюминия выше скорости растворения окислов, то происходит утолщение окисного слоя. В начале процесса оксидирования скорость окисления больше, скорости растворения, но с течением процесса увеличивается скорость растворения оксидов. Рост пленки прекращается, когда эти две скорости уравниваются.

Толщина оксидной пленки, полученной при анодировании алюминия, зависит от растворяющей способности электролита. А она, в свою очередь, определяется концентрацией кислоты, температурой и другими факторами.

Читать также:  Что означает сталь 40х

Толщина оксидного покрытия зависит также от состава алюминия и его сплавов. Химически чистый алюминий легче анодировать, чем его сплавы. С увеличение в составе сплава различных добавок труднее получить пленки с хорошими характеристиками. На алюминиевых сплавах, содержащих марганец, медь, железо, магний, покрытие получается шероховатым, неровным. Это объясняется высокой скоростью растворения интерметаллических соединений, в виде которых эти металлы присутствуют в алюминиевом сплаве.

Оксидные пленки на алюминии, полученные методом анодирования, состоят из двух слоев: первый слой, на границе с металлом, беспористый барьерный в толщину от 0,01 до 0,1 мкм; второй слой пористый и достаточно толстый (от 1 мкм до нескольких сотен мкм.). Рост окисного слоя происходит за счет утолщения внешнего слоя.

Химическое оксидирование алюминия

Химическое оксидирование алюминия – самый доступный, дешевый и простой способ получить оксидные пленки на алюминии и его сплавах. Метод химического оксидирования не требует подвода электрического тока. Процесс проводится в растворах хроматов и позволяет оксидировать большое количество деталей одновременно. По качеству полученные пленки уступают слоям, полученным методами, с использованием тока. Толщина оксидных слоев – около 2 – 3 мкм.

В связи с невысокими защитными свойствами окисных слоев, полученных химическим оксидированием, метод не нашел широкого применения (используется довольно редко).

Очень важно при химическом оксидировании алюминия и его сплавов постоянно контролировать температуру и состав электролита. При уменьшении концентрации щелочи в растворе для химического оксидирования – пленки получаются тонкие, а при увеличении и высокой температуре раствора — имеют рыхлую структуру.

Конечная обработка анодно-окисных слоев

Очень часто полученные защитные оксидные пленки подвергаются дополнительной обработке: окрашивание, уплотнение.

Уплотнение анодно-оксидных пленок на алюминии применяют для придания окисным слоям светостойкости, высокой коррозионной стойкости и повышения диэлектрических свойств. Процесс уплотнения основан на способности оксидных слоев впитывать влагу. Во время уплотнения часть оксидов превращается в гидроксиды, которые заполняют полые поры, тем самым уплотняя пленку. На производствах очень часто применяют для уплотнения горячую воду (температура порядка 100 °С). Качество уплотненных окисных слоев зависит от продолжительности обработки, температуры, характеристик самой пленки. Для того чтоб ускорить процесс, в воду добавляют ПАВ и соли. Полученная пленка может быть от светло-серого до темно-серого цвета.

Еще один способ уплотнения оксидных слоев на алюминии – обработка в растворе бихромата калия (около 40 г/л) при температуре 90 – 95 °С. Продолжительность – 20 – 25 минут. На вид пленка зеленого цвета (светлый или с желтоватым отливом).

Защитные свойства оксидных слоев, уплотненных различными способами, примерно одинаковы.

Окрашивание анодно-оксидных пленок на алюминии проводят для придания изделию декоративных свойств.

Окрашивание проводится в различного типа красителях. Оксиды алюминия очень хорошо впитывают и удерживают органические и неорганические красители.

Перед окрашиванием пленку необходимо тщательно промыть от остатков электролита. Процесс пигментации проводят методом окунания в ванну с красящими веществами. Интенсивность и насыщенность цвета зависит от пористости и толщины оксидного слоя.

При использовании органических красителей можно получить большую гамму цветов, но их светостойкость низкая. Чтобы повысить светостойкость уже окрашенные слои дополнительно обрабатывают в уксуснокислых растворах никеля, кобальта и борной кислоты.

При окрашивании с использованием органических красителей процесс ведет в два этапа. Алюминиевое изделие с готовой оксидной пленкой поочередно погружают в раствор одной, а потом другой соли. Между погружениями следует промывка. Процесс ведется при комнатной температуре. В каждом растворе обработка длится 5 – 10 минут.

Если окрашенная пленка должна эксплуатироваться в агрессивной коррозионной среде – ее дополнительно пропитывают парафином либо бесцветным лаком.

Уплотнение окисной пленки на алюминии при окрашивании не происходит.

Хим оксидирование стали технология

Содержание статьи

В современном мире имеется большое количество методов, которые используются для борьбы с образованием коррозии на поверхности металлов. Метод образования оксидной пленки является одним из самых эффективных.

Оксидирование металла

Хим оксидирование стали технология

Оксидирование представляет собой особый вид процедуры покрытия металлического материала оксидной пленкой. В результате данного процесса на металлической поверхности появляется тонкая пленка, которая выполняет барьерную функцию. Она защищает материала от попадания воздуха и влаги.

Оксидирование металла является одним из самых действенных методов для его защиты от образования на поверхности ржавчины. Пленка покрывает его достаточно плотным слоем. После проведения процедуры все процессы окисления металла полностью прекращаются. В итоге изделия, которые обработаны методом оксидирования, служат дольше и сохраняют свои привлекательные внешние качества на долгие годы.

Данная процедура обработки разных видов изделий применяется не только для того, чтобы защитить металлические изделия от коррозии. Данная ее функция известна многим. Однако в некоторых ситуациях она используется для того, чтобы придать металлическому изделию декоративные качества.

Сегодня процедуре оксидирования подвергаются многие виды металлов.

В связи с этим выделяют:

Оксидирование алюминия

Данная процедура встречается достаточно частою. Для нее используется:

Анодное оксидирование алюминия

Химическое оксидирование алюминия

Электрохимическое оксидирование алюминия

В результате после обработки металл получает небольшой слой оксидной пленки, которая обладает отличными защитными качествами.

Сама процедура не отнимает много времени. Она проводится после предварительной подготовки металла. Его поверхность должна быть чистой и обезжиренной, чтобы оксидная пленка имела лучшее сцепление с алюминием.

Для алюминия применяется еще технология под название цветное оксидирование алюминия. Благодаря этому на поверхности металла образуется пленка определенного цвета. Этот процесс носит декоративный характер. Эффект от этого метода длится достаточно продолжительный период времени.

Оксидирование стали

Хим оксидирование стали технологияСегодня не редко проводится оксидирование стальных изделий. Они являются подверженными образованию коррозийной пленки.

Химическое оксидирование стали

Для обработки стального материала применяется химический вид оксидирования. Он заключается в том, что сталь погружается в специально приготовленный кислый раствор, который способствует образованию на поверхности стали оксидную пленку. Она обладает небольшой толщиной. Однако у нее высокий уровень прочности.

Перед тем, как металл будет обработан оксидирующим веществом, его тщательным образом подготавливают. Для этого используются специальные средства для удаления загрязнений и жирной пленки.

Оксидирование титана

Как известно такой металл, как титан и его сплавы обладают низким уровнем износостойкости. Для того чтобы металл приобрел прочность и твердость применяются разные методы. Одним из них является оксидирование. Благодаря нему на поверхности металла появляется защитная пленка, которая увеличивает прочность титана в разы.

Таблица 1. Оксидирование металла — подготовка поверхности.

Состав и режимНомер раствора
123
Состав, массовая доля, %
серная кислота (плотность 1,8 г/см3)90—9220—30
азотная кислота (плотность 1,4 г/см3)95-975-640—60
фтористоводородная кислота или ее соли3-50,5—110—12
Рабочая температура, К290—300290—300290—300
Выдержка, мин0,1—0,21—20,2—0,3

Технология оксидирования

Технология заключается в том, чтобы создать такие условия, чтобы на металлической поверхности образовалась оксидная пленка, предотвращающая проникновение кислорода и воды. Для этого используются специализированные растворы и подводится электрический ток при необходимости. Процесс может проводиться и холодным методом и горячим. Выбор метода зависит от вида металла.

Перед началом процедуры все металлы проходят подготовку. Это является первым этапом. На нем с поверхности удаляются все загрязнения. Также она обезжиривается.

Читать также:  Турбо горелка на отработке

Затем металл опускают в ту или иную среду и под действием внешних агрессивных условий определенного вида на них образуется плотная оксидная пленка.

Виды оксидирования

Хим оксидирование стали технология

Сегодня используется большое количество видов. Они представлены следующими категориями:

Анодное оксидирование

Этот вид является достаточно распространенным. Он представляет собой образование на металле оксидной пленки для предотвращения появления коррозии методом их поляризации их анодов в среде, которая создается при помощи подключения электрического тока. Данный метод применяется для таких металлов, как алюминий, магний, титан.

Микродуговое оксидирование

Данная процедура заключается в том, что оксиды многих метало, которые были получены методом электрохимического окисления, подвергаются химической модификации с использованием электрического тока. Благодаря периодически возникающим электрическим импульсам на поверхности металлов появляется плотная пленка, которая служит надежной защитой от появления коррозии. Данная процедура носит еще одно название плазменно-электролитическое оксидирование. Оно используется лишь на небольшом количестве предприятий.

Холодное оксидирование

Эта процедура применяется только по отношению к стальным материалам разного типа. Ее еще называют чернением.

Щелочное оксидирование

Хим оксидирование стали технологияСегодня не редко для обработки металлов используется щелочная среда. Для проведения данного процесса идеально подходят поверхности из стали. Технология проведения щелочного оксидирования предусматривает изготовление щелочной среды для того, чтобы при взаимодействии с металлом на его поверхности в результате взаимодействия образовалась оксидная пленка.

Низкотемпературное оксидирование

Данный вид процесса образования оксидной пленки является нейтральным. В процесс используется метод нагревания до невысоких температур, что обеспечивает покрытие металла слабой оксидной пленкой.

Электрохимическое оксидирование

Этой процедуре подвергаются разные виды металлов. Металлы погружаются в среду электролита.

Таблица 2. Составы растворов для декапирования.

Декапирование алюминия и его сплавовТемператураВремя обработки
Состав 1 :
Азотная кислота 10-15% раствор (по объему)20°С5-15 с

Таблица 3. Составы растворов для окрашивания алюминия в черный цвет.

Для окрашивания в черный цвет:г/л (воды)Температура и время обработки
Состав 1:
Молибдат аммония = молибденовокислый аммоний = ammonium molybdate = парамолибдат аммония= (NH4)6Mo7O2410-2090-100°С / 2-10 мин
Хлорид аммония = хлористый аммоний = NH4Cl5- 15

Таблица 4. Составы растворов для окрашивания алюминия в серый цвет.

Для окрашивания в серый цвет:г/л (воды)Температура и время обработки
Состав 1:
Оксид мышьяка (III) = триокись мышьяка = трехокись мышьяка = arsenic trioxide As2O370-75Кипение / 1-2 мин
Кальцинированная сода = карбонат натрия = натрий углекислый . Химическая формула, Na2CO370-75

Таблица 5. Составы растворов для окрашивания алюминия в зеленый цвет.

Для окрашивания в зеленый цвет:г/л (воды)Температура и время обработки
Состав 1:
Ортофосфорная кислота40-5020-40°С / 5-7 мин
Кислый фтористый калий = калий бифторид = калий гидрофорид = kalium bifluoratum = potassium bifluor >3-5
Хромовый ангидрид = оксид хрома(VI) = трёхокись хрома = CrO3 (весьма химически активное вещество, способен вызвать при соприкосновении с органическими веществами возгорания и взрывы)5-7

Таблица 6. Составы растворов для окрашивания алюминия в оранжевый цвет.

Для окрашивания в оранжевый цвет:г/л (воды)Температура и время обработки
Состав 1:
Хромовый ангидрид = оксид хрома(VI) = трёхокись хрома = CrO3 (весьма химически активное вещество, способен вызвать при соприкосновении с органическими веществами возгорания и взрывы)3-520-40°С / 8-10 мин
Фторсиликат натрия = кремнефтористый натрий = Na2SiF63-5

Таблица 7. Составы растворов для окрашивания алюминия в желто-коричневый цвет.

Для окрашивания в желто-коричневый цвет:г/л (воды)Температура и время обработки
Состав 1:
Кальцинированная сода = карбонат натрия = натрий углекислый . Химическая формула, Na2CO340-5080-100°С / 3-20 мин
Натрия хромат = хромовокислый натрий = Na2CrO410-15
Гидроксид натрия = каустическая сода = каустик = Едкий натр = едкая щёлочь. Химическая формула NaOH2-2,5

Статьи по теме

Хим оксидирование стали технология

Антикоррозионные средства

Антикоррозионные пигменты классифицируются на: цинковые крона, алюминий три-полифосфаты и слюдянистую окись железа.

Хим оксидирование стали технология

Защита трубопроводов от коррозии

Сегодня без разных видов трубопроводов невозможно представить себе жизнью Они находятся практически в каждом населенном пункте и обеспечивают коммуникации. Производств труб для прокладки под землей осуществляется из металлов самых разных типов.

Хим оксидирование стали технология

Процесс коррозии

В современном мире из металлов самых разных видов производится большое количество продукции. Металлические материалы присутствуют в разных отраслях промышленности в виде станков и машин, инструментов.

Хим оксидирование стали технология

Оксидированная медь

Обращает на себя внимание тот факт, что крыши многих старинных сооружений, изготовленные из меди, хорошо сохранились до сегодняшнего дня. Всё дело в том, что медь естественным образом подвергается окислению.

Хим оксидирование стали технологияХим оксидирование стали технология

Пассивирование

Пассивирование поверхности стальных изделий с целью некоторого повышения стойкости их к воздействию окружающей среды проводят в кислых или щелочных растворах, к которым часто добавляют окислители — хроматы, бихроматы. Эффективность такой антикоррозионной обработки определяется как составом раствора, так и составом обрабатываемого металла и состоянием его поверхности. Наибольший положительный эффект достигается при обработке высоколегированных сталей, в особенности хромоникелевых типа 12Х18Н10Т. Защитная способность пассивирующих пленок на углеродистых сталях значительно ниже, и поэтому для них такая обработка может служить лишь как способ кратковременной защиты при хранении изделий.

Для химического пассивирования легированных сталей рекомендуются концентрированные растворы азотной кислоты. При использовании более разбавленных растворов в них вводят бихромат калия или натрия. Углеродистые стали обрабатывают в фосфорнокислых или слабощелочных бихроматных растворах. Повышение температуры растворов интенсифицирует процесс пассивирования и позволяет уменьшить его продолжительность.

В табл. 3 приведены составы растворов и режимы пассивирования черных металлов. Растворы 1, 2, 3 используют для обработки высоколегированных коррозионно-стойких сталей, в особенности аустенит-ного класса. Растворы 4 и 5 пригодны для сталей ферритного класса типов Х17Н2, 1X13, растворы 6 и 7 — для углеродистых сталей, 7 — среднелегированных сталей. Раствор 4 неприемлем для обработки деталей, имеющих паяные соединения. Бихромат калия может быть заменен бихроматом натрия.

Хим оксидирование стали технология

Пассивирование холоднокатаной стали можно вести электрохимически в растворе, содержащем 20-25 г/л двухромовокислого калия, 20-25 г/л трехзамещенного фосфата натрия, 5 г/л гидроксида натрия, при температуре 80-85 °С, анодной плотности тока 8-10 А/дм 2 в течение 5-10 с.

Для приготовления пассивирующих растворов следует применять дистиллированную или конденсатную воду и химикаты квалификации не ниже марки «Ч».

По литературным сведениям, положительных результатов можно достигнуть, применяя многоступенчатую обработку по следующей схеме: сначала стальные детали обрабатывают в течение 30 мин в 5 %-ном растворе гидроксида натрия при температуре 70-90 °С. Затем после промывки в воде их пассивируют в течение часа в азотнокислом растворе, содержащем бихромат. Для обработки сталей фер-ритного и мартенситного классов используют раствор, содержащий 20 % азотной кислоты и 2 % двухромовокислого калия; для обработки сталей аустенитного класса применяют 20 %-ный раствор азотной кислоты, а сталей с высоким содержанием углерода и хрома — 50 %-ный раствор азотной кислоты. Температура растворов во всех случаях 55-60 °С. После пассивирования детали обрабатывают в течение 15-20 мин в горячем растворе гидроксида натрия, промывают и просушивают. Предполагается, что первоначальная обработка в щелочном растворе способствует очистке поверхности металла, благодаря чему последующее пассирование оказывается более эффективным.

Обработка стали в указанных пассивирующих растворах не сопровождается заметным выделением газов. Начало газовыделения свидетельствует о том, что происходит травление металла, которое препятствует образованию на нем пассивирующей пленки.

После обработки деталей в кислых пассивирующих растворах и промывки в проточной воде проводят нейтрализацию остатков кислоты в 2-3 %-ном растворе аммиака. Для этой же цели предложено использовать раствор, содержащий 25-30 г/л олеиновой кислоты и 2-4 г/л гидроксида натрия. Точное количество гидроксида натрия устанавливают с учетом кислотного числа олеиновой кислоты. Обработку ведут при 80-90 °С в течение 2-3 мин.

Весьма эффективным способом пассивирования поверхности стали является электрохимическое или химическое полирование. Наши исследования показали, что анодная обработка в полировочном электролите высоколегированных сталей значительно больше повышает их стойкость против коррозии, чем указанные выше способы химического пассивирования.

Защитная способность оксидных пленок, полученных в процессе анодного полирования, может быть повышена последующей обработкой изделий в 10 %-ном растворе гидроксида натрия в течение 15-20 мин при температуре 50-60 ° С. При такой обработке уменьшается пористость пассивирующих пленок. Электрохимически полированные изделия из стали 12Х18Н10Т могут успешно эксплуатироваться в жестких и особо жестких климатических условиях.

Для защиты от коррозии изделий из углеродистых и легированных сталей при межоперационном хранении широко используются растворы нитрита натрия. Слабоконцетрированные растворы содержат 5-7 г/л нитрита натрия и 3-5 г/л углекислого натрия. Изделия выдерживают в таком растворе при температуре 60-70 °С в течение 5-10 мин, при комнатной температуре- 30-40 мин. Более надежная противокоррозионная защита достигается при использовании концентрированных нейтральных растворов, содержащих 250-300 г/л нитрита натрия. После обработки в таком растворе и высыхания влаги на поверхности изделия остаются кристаллы указанной соли, что способствует повышению стойкости металла против коррозии.

На практике часто применяют растворы нитрита натрия с добавкой глицерина, который повышает их вязкость, что способствует образованию на металле более стабильного защитного слоя. Однако такой раствор не имеет существенных преимуществ по сравнению с указанными выше концентрированными растворами нитрита натрия.

Ингибирующее действие на процесс коррозии стали оказывают некоторые органические соединения, в том числе триэтаноламин, моноэтанол амин.

Стальные детали, прошедшие операцию травления и в дальнейшем подвергающиеся окраске, целесообразно обработать в течение 1-3 мин в 30-35 %-ном растворе фосфорной кислоты без последующей промывки в воде. Образующийся после высыхания на металле слой фосфатов некоторое время предохраняет его от коррозии.

Технология оксидирования черных металлов

Технологический процесс получения оксидных и оксидно-фосфатных покрытий включает механическую и химическую подготовку поверхности изделий, оксидирование и последующую обработку покрытия с целью повышения его стойкости против коррозии. При выполнении подготовительных операций преследуют такие же цели, как и при подготовке перед нанесением металлических покрытий: сглаживание микрошероховатостей, очистку от механических и химических загрязнений, иногда — придание декоративного вида. Особенно тщательно должна проводиться очистка перед получением оксидно-фосфатных покрытий, так как используемые растворы имеют кислую реакцию и не обладают обезжиривающим действием. Активирование поверхности металла в этом случае проводят в 5-6 %-ном растворе фосфорной кислоты.

Для приготовления оксидировочного раствора сначала растворяют в воде едкую щелочь, затем добавляют окислители и нагревают до кипения. Температура, при которой происходит кипение, служит показателем правильности состава раствора. Если она превышает требуемую температуру, значит в ванне недостает воды, если же температура ниже требуемой — ощущается недостаток едкой щелочи.

При эксплуатации ванны щелочного оксидирования состав раствора изменяется вследствие испарения воды, разложения окислителей, накопления солей, железа. О необходимости его корректирования можно судить по изменению температуры кипения раствора и внешнего вида оксидного покрытия. Повышение температуры кипения указывает на необходимость добавления воды, понижение ее — на необходимость добавления щелочи. Увеличение концентрации гидроксида натрия в 1 л раствора на 10 г приводит к повышению температуры кипения примерно на 1 ° С. Для устранения зеленоватого оттенка покрытия в ванну добавляют окислитель. Эта же добавка, а также некоторое понижение температуры кипения раствора способствуют устранению красновато-бурого налета.

Накапливающийся на дне ванны при ее работе осадок солей железа нужно периодически удалять, избегая при этом взмучивания раствора.

Одновременной обработке в щелочном оксидированном растворе подвергают изделия, изготовленные из сходных марок стали, что способствует получению однородной окраски пленок. На изделиях не допускается паяных соединений и сопряжений с другими металлами, которые, разрушаясь в щелочном растворе, могут ухудшить качество оксидирования.

Для приготовления оксидно-фосфатного раствора его компоненты растворяют в отдельных порциях воды, после чего сливают вместе. Нитрат кальция можно приготовить в цеховых условиях растворением извести в азотной кислоте. Нитрат бария вводят в горячую воду при интенсивном перемешивании. Двуокись марганца мало растворима в оксидировочном растворе. Во избежание взмучивания при загрузке и выгрузке изделий ее помещают на дно ванны в мешочках из хлопчатобумажной ткани.

Контроль оксидно-фосфатных растворов состоит в ежедневном определении их кислотности и лериодическом анализе на содержание нитратов. Кислотность, как принято при анализе ванн фосфатирования, выражают в «точках». Одна точка соответствует количеству миллилитров 0,1 н раствора щелочи, затраченной на титрование 10 мл рабочего раствора. Наименьшее количество свободной фосфорной кислоты, при котором формируются оксидно-фосфатные покрытия, соответствует 3,5-4 точкам. Для повышения кислотности на одну точку, добавляют 1 г фосфорной кислоты на 1 л раствора. Корректирование по кислоте проводят после обработки в ванне нескольких загрузок деталей. Количество нитратов, которое необходимо добавить в ванну, определяют по данным химического анализа раствора.

В процессе оксидирования допускается периодически выгружать обрабатываемые изделия из ванны, промывать их в воде, после чего продолжать оксидирование. При этом внешним осмотром контролируют качество покрытия ро интенсивности и равномерности окраски оксидной пленки. Мелкие детали загружают в ванну в сетчатых стальных корзинах, которые периодически встряхивают, чтобы обеспечить равномерное воздействие раствора на всю поверхность.

После оксидирования изделия промывают сначала в непроточной, а затем в проточной воде. Первая из них используется для восполнения убыли воды, испаряющейся при работе оксидировочной ванны.

Промывку изделий после оксидирования нужно проводить очень тщательно, так как оставшиеся на металле соли могут вызвать его коррозию. Для проверки полноты промывки на поверхность изделия наносят 2-3 капли спиртового раствора фенолфталеина или проверяют кислотность промывной воды фильтровальной бумажкой, смоченной указанным раствором. В присутствии следов щелочи фенолфталеин окрашивается в розовый цвет. Для более полного удаления остатков щелочи иногда применяют добавочную промывку оксидированных изделий в 3-5 %-ном растворе хромового ангидрида. Недоброкачественные покрытия удаляют обработкой изделий в 10-15 %-ных растворах серной или соляной кислот.

Контроль качества оксидных и оксидно-фосфатных покрытий проводится внешним осмотром и определением их защитных свойств. При внешнем осмотре на поверхности оксидированных изделий не должно быть повреждений покрытия, рыхлого налета. Если проводилась декоративная отделка, то их внешний вид должен соответствовать эталонному образцу, принятому на производстве.

Защитную способность оксидных покрытий на стали проверяют, погружая изделия в раствор, содержащий 20 г/л сульфата меди. Покрытие можно считать выдержавшим испытание, если на поверхности изделия в течение 30 с не появятся темные пятна выделившейся контактной меди.

Для контроля качества пассивирования коррозионно-стойкой стали используют раствор, содержащий 1 г/л сульфата меди и 8-4 мл/л серной кислоты. До появления на поверхности стали пятна контактно выделившейся меди должно пройти не менее 4-5 мин.

Автор: Администрация Общая оценка статьи: Хим оксидирование стали технологияХим оксидирование стали технологияХим оксидирование стали технологияХим оксидирование стали технология Хим оксидирование стали технологияОпубликовано: 2012.11.08

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Оставить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *