Формулы связанные с пружиной

Каждый из нас знает, что такое пружина . И мы знаем, что пружину можно удлинять или же, наоборот, укорачивать, если приложить к ней силу.

Формулы связанные с пружиной

Поскольку для того, чтобы удлинить или укоротить пружину, требуется усилие, логично предположить, что пружина оказывает "сопротивление" при ее деформации (растяжении или же сжатии) — в ней возникает сила. Это сила упругости F у п р у г о с т и F_ <упругости>F у п р у г о с т и ​ .

Можно заметить, что чем больше мы пытаемся удлинить пружину (или чем больше укоротить ее), тем бОльшую силу приходится прикладывать к пружине. Тем большая сила упругости возникает в пружине.

Формулы связанные с пружинойНо пружины бывают разные. Некоторые легко поддаются деформации усилием человека. Некоторые — сложно. Так, например, не составляет труда сжать пружину детского пистолета на несколько сантиметров. Пружину же в амортизаторе машины сжать на те же несколько сантиметров намного сложнее. Должна существовать какая-то величина, которая отражала бы то, что пружины бывают разные. И такая величина есть: это k k k — коэффициент упругости (коэффициент жесткости, жесткость). Чем сложнее сжать пружину, тем больше k k k . То есть более жесткая пружина имеет бОльшую по величине жесткость k k k . Чем больше k k k — тем больше сила упругости, которая возникает в пружине.

Наши рассуждения о влиянии удлинения (укорочения) и жесткости пружины на силу упругости закреплены в законе Гука:

Однако закон Гука выполняется не всегда. Закон Гука справедлив только для пластичных деформаций. Это такие деформации, при которых тело полностью восстанавливает свою форму и размеры после исчезновения сил, деформирующих тело. Короче говоря, закон Гука будет выполняться и деформации будут пластичными в том случае, когда растянутая или сжатая пружинка вернет себе форму после того, как ее перестанут растягивать или сжимать. Если пружину растянуть слишком сильно, то она может так и остаться растянутой. Деформации, которым она подверглась, были непластичными, и закон Гука выполнялся не везде.

Задачи для самостоятельного решения: #сила упругости

Пружина — упругий объект, целенаправленно подвергающийся сжатию или растяжению, в результате чего может запасать энергию, а затем, при ослабевании внешней деформирующей силы, возвращать ее. Пружины в нормальных условиях не должны подвергаться остаточным (пластическим) деформациям, т.е. таким воздействиям, после которых форма изделия уже не восстанавливается вследствие нарушения структуры их материала.

Читать также:  Смешанное соединение резисторов формула

Типы пружин

Пружины можно классифицировать по направлению прилагаемой нагрузки:

  • пружины растяжения; предназначены для работы в режиме растягивания, при деформации их длина увеличивается; как правило, такие устройства имеют нулевой шаг, т.е. намотаны "виток к витку"; примером могут служить пружины в весах-безменах, пружины для автоматического закрытия дверей и т.д.;
  • пружины сжатия под нагрузкой, напротив, укорачиваются; в исходном состоянии между их витками есть некоторое расстояние, как, например, в амортизаторах автомобильных подвесок.

В данной статье рассматриваются пружины, представляющие собой цилиндрические спирали. В технике применяется много других разновидностей упругих устройств: пружины в виде плоских спиралей (используются в механических часах), в виде полос (рессоры), пружины кручения (в точных весах), тарельчатые (сжимающиеся конические поверхности) и т.п. Своего рода пружинами являются амортизирующие изделия из полимерных эластичных материалов, прежде всего резины. Во всех этих устройствах используется один и тот же принцип — запасать энергию упругой деформации и возвращать ее.

Попробуй обратиться за помощью к преподавателям

Физические характеристики пружин

Цилиндрические пружины характеризуются рядом параметров, сочетание которых обуславливает их жесткость — способность сопротивляться деформации:

  1. материал; пружины чаще всего изготавливают из стальной проволоки, причем сталь в них применялася особая, ее характеризует среднее или высокое содержание углерода, низкое содержание других примесей (низколегированный сплав) и особая термообработка (закалка), придающая материалу дополнительную упругость;
  2. диаметр проволоки; чем он меньше, тем эластичнее пружина, но тем меньше ее способность запасать энергию; пружины сжатия изготавливают, как правило, из более толстой проволоки, чем пружины растяжения;
  3. форма сечения проволоки; не всегда проволока, из которой намотана пружина, имеет круглое сечение; уплощенное сечение имеют пружины сжатия, чтобы при максимальном сокращении длины (виток "садится" на соседний виток) конструкция была более устойчивой;
  4. длина и диаметр пружины; длину пружины следует отличать от длины проволоки, из которой она намотана; эти два параметра согласуются через количество витков и диаметр пружины, который, в свою очередь, не следует путать с диаметром проволоки.
Читать также:  Обмотка электродвигателя славянка схема

Задай вопрос специалистам и получи
ответ уже через 15 минут!

Существуют и другие физические характеристики, влияющие на работоспособность пружин. Например, при повышении температуры металл становится менее упругим, а при существенном ее понижении может стать хрупким. При интенсивной эксплуатации пружина со временем теряет часть упругости по причине постепенного разрушения связей между атомами кристаллической решетки.

Понятие жесткости

Жесткость как физическая величина характеризует силу, которую нужно приложить к пружине для достижения определенной степени растяжения или сжатия.

Коэффициент жесткости рассчитывается по формуле Гука:

где $F$ — сила, развиваемая пружиной, $k$ — коэффициент жесткости, зависящий от ее характеристик (см. выше) и измеряемый в ньютонах на метр, $x$ — абсолютное приращение расстояния, на которое изменилась длина пружины после приложения внешней силы. Знак минус в правой части формулы свидетельствует о том, что сила, порождаемая пружиной, действует в противоположном по отношению к нагрузке направлении.

Коэффициент жесткости можно вычислить экспериментально, подвешивая на расположенную вертикально и закрепленную за верхний конец пружину грузы с известной массой. В этом случае имеет место зависимость

$m cdot g — k cdot x = 0$,

где $m$ — масса, $g$ — ускорение свободного падения. Отсюда

Расчет жесткости цилиндрической пружины

Довольно просто понять как работает плоская пружина. Если положить на край письменного стола линейку и прижать один ее конец рукой к поверхности, но второй можно упруго изгибать, запасая и высвобождая энергию. Очевидно, что в момент изгиба расстояния между молекулами материала в некоторых фрагментах линейки увеличиваются, в некоторых уменьшаются. Электромагнитные связи, действующие между молекулами, стремятся вернуть вещество к прежнему геометрическому состоянию.

Несколько сложнее дело обстоит с цилиндрической пружиной. В ней энергия запасается не благодаря деформации изгиба, а за счет скручивания проволоки, из которой пружина навита, относительно продольной оси этой проволоки.

Представим сильно увеличенное сечение проволоки, из которой навита цилиндрическая пружина, выполненное перпендикулярной ее оси плоскостью. При таком рассмотрении можно абстрагироваться от спиральной формы и мысленно разбить весь объем проволоки на множество соприкасающихся торцевыми поверхностями "цилиндров", диаметр которых равен диаметру проволоки, а высота стремится к нулю. Между соприкасающимися торцами действуют молекулярные силы, препятствующие деформации.

Читать также:  Регулировка карбюратора бензопилы штиль 660 своими руками

При растяжении или сжатии пружины угол наклона между витками изменяется. Соседние "цилиндры" при этом вращаются друг относительно друга в противоположных направлениях вокруг общей оси. В каждом таком сечении запасается энергия. Отсюда следует, что чем из более длинного куска проволоки навита пружина (здесь играют роль диаметр и высота цилиндра, а также шаг витка), тем большее количество энергии она способна запасти. Увеличение диаметра проволоки также повышает ее энергоемкость. В целом формула, учитывающая основные факторы жесткости пружины, выглядит так:

  • $R$ — радиус цилиндра пружины,
  • $n$ — количество витков проволоки радиуса $r$,
  • $G$ — коэффициент, зависящий от материала.

Рассчитать коэффициент жесткости пружины, выполненной из стальной проволоки с $G = 8 cdot 10^<10>$ Па и диаметром 1 мм. Радиус пружины 20 мм, количество витков — 25.

Подставим в формулу числовые значения, попутно переведя их в единицы системы СИ:

Ответ: $100 frac<Н><м>$

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

Коэффицие́нт упру́гости (иногда называют коэффициентом Гука, коэффициентом жёсткости или жёсткостью пружины) — коэффициент, связывающий в законе Гука удлинение упругого тела и возникающую вследствие этого удлинения силу упругости. Применяется в механике твердого тела в разделе упругости. Обозначается буквой k [1] , иногда D [2] или c [3] . Имеет единицу измерения Н/м или кг/с 2 (в СИ), дин/см или г/с 2 (в СГС).

Коэффициент упругости численно равен силе, которую надо приложить к пружине, чтобы её длина изменилась на единицу расстояния.

Содержание

Коэффициент упругости по определению равен силе упругости, делённой на изменение длины пружины: k = F e / Δ l . <displaystyle k=F_<mathrm >/Delta l.> [4] Коэффициент упругости зависит как от свойств материала, так и от размеров упругого тела. Так, для упругого стержня можно выделить зависимость от размеров стержня (площади поперечного сечения S <displaystyle S>и длины L <displaystyle L>), записав коэффициент упругости как k = E ⋅ S / L . <displaystyle k=Ecdot S/L.>Величина E <displaystyle E>называется модулем Юнга и, в отличие от коэффициента упругости, зависит только от свойств материала стержня [5] .

Оставить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *