Что такое отпускная хрупкость

Что такое отпускная хрупкостьОтпуском металла называется технологический процесс термообработки закалённого стального сплава. Он даёт возможность завершить фазовые превращения в микроструктуре (мартенсите), которая приобретает наиболее устойчивое состояние. Дело в том, что в процессе закалки в металле возникают внутренние напряжения — осевые, радиальные, тангенциальные. Чтобы устранить их негативные последствия такие как хрупкость и низкая пластичность, изделия нагревают в печах при различных температурах (от 250 °C до 650 °C), выдерживают заданное время (от 15 минут до 1,5 часа), а потом медленно охлаждают.

Комплекс этих мероприятий приводит к выделению лишнего углерода, перестройке и упорядочиванию структуры металла, устранению дефектов его кристаллического строения. Обработанные материалы приобретают заданный комплекс механических свойств, среди которых основные — увеличение пластичности и снижение хрупкости при сохранении достаточного уровня прочности.

Виды отпуска стали

  1. Низкий.
  2. Средний.
  3. Высокий.

Понятие низкого отпуска.

Что такое отпускная хрупкостьДля снижения внутренних напряжений низкий отпуск стали обычно проводят нагреванием до 250 °C в течение от 1 до 2,5 часа. Из металла в процессе диффузии выделяется часть излишков углерода, из них образуются карбидные частицы в виде пластин и стержней. Неравновесная структура мартенсита закалки превращается в равновесный отпущенный мартенсит. Этим достигается стабилизация размеров изделий, повышаются вязкость и прочность, а показатели твёрдости практически не изменяются.

Низкотемпературному отпуску подвергают железоуглеродистые и низколегированные стали для производства режущего и измерительного инструмента, который не испытывает динамических нагрузок. В основном его выполняют для сталей, закалённых токами высокой частоты, а также для сплавов, поверхность которых ранее насыщалась углеродом и азотом.

Особенности среднего отпуска.

Он проводится при температурах от 350 °C до 500 °C и обеспечивает высокую упругость и релаксационную стойкость. Из стали выделяется весь избыточный углерод, а карбид переходит в цементит. Мартенсит уже полностью разложился, а перестройка структуры металла (полигонизация) и её совершенствование (рекристаллизация) ещё не начались. Новая комбинация называется троостомартенсит и характеризуется ускорением процессов диффузии. Кристаллическая решётка сплава при этом превращается в кубическую, а внутренние напряжения ещё больше уменьшаются.

Охлаждение металла осуществляют в воде, что тоже увеличивает предел выносливости. Среднетемпературный отпуск необходим при производстве упругих деталей: рессор, ударного инструмента и пружин.

Технология высокого отпуска.

Что такое отпускная хрупкостьПри температурах свыше 500 °C в углеродистых сплавах происходят структурные преобразования, которые уже не относятся к фазовым превращениям. Претерпевают изменения конфигурация и габариты частиц кристаллов, их зёрна укрупняются, а форма стремится к равноосной. Комплексная термообработка, включающая закалку и высокий отпуск стали, в материаловедении называется улучшением, а кристаллическая структура металла после этого — сорбитом отпуска. Она считается наиболее эффективной, так как достигается идеальное сочетание вязкости, пластичности и прочности сплава. Однако несколько снижается твёрдость, поэтому не приходится надеяться на улучшение износостойкости.

Продолжительность высокого отпуска варьируется в пределах от 1 до 6 часов и зависит от размеров зубчатых передач, опор, коленчатых валов, втулок, болтов и винтов, изготовленных из конструкционных и среднеуглеродистых сталей. Эти изделия в процессе эксплуатации воспринимают ударные нагрузки и работают на сжатие, растяжение и изгиб, а к их прочности, выносливости, текучести и ударной вязкости предъявляются особые требования.

Явление отпускной хрупкости

Изучая сущность процесса, можно было бы сделать вывод, что при любом увеличении температуры отпуска станет повышаться и ударная вязкость. Но при обработке стальных сплавов в определённых температурных интервалах возникает внезапное падение ударной вязкости без изменения прочих механических характеристик. Это явление обозначается термином «отпускная хрупкость» и объясняется следующим образом:

  1. Что такое отпускная хрупкостьОтпускная хрупкость Ι рода — необратимый процесс. При температурах от 250 °C до 300 °C карбиды из мартенсита начинают выделяться неравномерно, что приводит к резкому различию прочности на поверхности зёрен кристаллов и внутри их. Этому подвержены все виды стальных сплавов вне зависимости от состава и скорости охлаждения по окончании отпуска. Это явление невозможно устранить и для его предотвращения стараются просто не выполнять обработку при данных температурах.
  2. Отпускная хрупкость ΙΙ рода — обратимый процесс. Возникает при замедлении охлаждения некоторых легированных хромом, марганцем и никелем сталей, которые отпускались при температурах выше 500 °C. Причиной опять является выделение и диффузное перераспределение карбидов, а также фосфидов и нитридов. Чтобы подавить развитие обратимой хрупкости, применяют повторный отпуск с масляным охлаждением, при этом скорость последнего должна быть как можно более высокой. Добавки в легированную сталь до 1% вольфрама или до 0,3% молибдена тоже помогают решить эту проблему. Интересно, что если во время эксплуатации детали будут снова подвергаться нагреву до температуры выше 500 °C, отпускная хрупкость возникнет повторно, почему она и получила название обратимой.
Читать также:  Рейтинг аккумуляторных триммеров для травы

Термообработка инструментальных сплавов

Что такое отпускная хрупкостьПрактически для всех металлов справедливо утверждение: с повышением температуры отпуска снижается прочность и увеличивается пластичность. Исключение составляют только быстрорежущие стали, применяющиеся в производстве инструментов. Для обеспечения лучших характеристик теплостойкости и износостойкости их легируют карбидообразующими элементами: молибденом, кобальтом, вольфрамом и ванадием. А для закалки используют нагрев до температур свыше 1200 °C, что позволяет наиболее полно растворить образовавшиеся карбиды.

Теплопроводности самого железа и легирующих его элементов значительно различаются, поэтому для предотвращения деформации и растрескивания при нагреве следует выполнять температурные паузы. Это происходит при достижении 800 °C и 1050 °C, а для больших предметов первый интервал назначают при температуре 600 °C. Длительность остановки лежит в пределах от 5 до 20 минут, что позволяет обеспечить наилучшие условия для растворения карбидов. Охлаждение чаще всего проводят в масле.

Существенно уменьшить деформацию позволяет ступенчатая термообработка стали в расплавах солей, где закалка выполняется при температуре около 500 °C. Для увеличения твёрдости изделий далее следует двукратный отпуск при 570 °C. Длительность процесса составляет 1 час, а на его режим влияют химические свойства легирующих элементов и температура, определяющая скорость выделения карбидов.

Конструкционные стали, подвергаемые закалке и отпуску, имеют склонность к отпускной хрупкости.

После отпуска при определенных температурах и условиях наблюдается повышение температуры вязко–хрупкого пере­хода (рис. 2.12). На многих сталях охрупчивание наблюда­ется и по снижению ударной вязкости (рис. 2.13). Однако изменение температуры перехода является более надеж­ным критерием склонности стали к отпускной хрупкости. Различают два рода отпускной хрупкости (рис. 2.13).

Отпускная хрупкость I рода, или необратимая, проявляется при отпуске около 300 °С, и отпускная хрупкость II рода, или обратимая, обнаруживается после отпуска выше 500 °С.

Необратимая отпускная хрупкость (I рода) присуща практически всем сталям, углеродистым и легированным, после отпуска в области температур 250–400°С. Повтор­ный отпуск при более высокой температуре (400–500 °С) снимает хрупкость, и сталь становится к ней не склонной даже при отпуске вновь в район опасных температур. В связи с этим эта хрупкость получила название необра­тимой. Этот род хрупкости не зависит от скорости ох­лаждения после отпуска.

Что такое отпускная хрупкостьЧто такое отпускная хрупкость

1 – закалка; сталь склонна к отпускной хрупкости; 2 – ВТМО; сталь не склонна к отпускной хрупкости Рисунок 2.12 – Влияние температуры испытанияна переход стали 37ХНЗА из вязкого состояния в хрупкое1 – закалка; сталь склонна к отпускной хрупкости; 2 – ВТМО; сталь не склонна к отпускной хрупкости Рисунок 2.13 – Влияние температуры отпуска стали 37ХНЗА на ударную вязкость и твердость

Легирующие элементы, за исключением кремния,невлияют существенно на развитие хрупкости I рода. Крем­ний сдвигает интервал развития хрупкости в область более высоких температур отпуска (350–450°С). Высокотемпе­ратурная термомеханическая обработка (ВТМО) уменьша­ет склонность к отпускной хрупкости (см. рис. 2.13).Напрактике для исключения охрупчивания стали избегают проведения отпуска в области опасных температур.

Хотя природа необратимой отпускной хрупкости стали окончательно не установлена, считается, что наиболее ве­роятной причиной охрупчивания является выделение кар­бидных фаз по границам зерен на начальных стадиях рас­пада мартенсита. Вследствие этого создается неоднородное состояние твердого раствора, возникают пики напряжений, и сопротивление разрушению по границам заметно меньше, чем по телу зерна, происходит межкристаллитное разру­шение.

Обратимая отпускная хрупкость (II рода) в наиболь­шей степени присуща легированным сталям после высоко­го отпуска при 500–650 °С и медленного охлаждения от температур отпуска. При быстром охлаждении после от­пуска (в воде) вязкость не уменьшается, а монотонно возрастает с повышением температуры отпуска. Отпускная хрупкость усиливается, если сталь длительное время (8–10 ч) выдерживается в опасном интервале температур.

Отпускная хрупкость II рода может быть устранена по­вторным высоким отпуском с быстрым охлаждением и вы­звана вновь высоким отпуском с последующим медленным охлаждением. Поэтому такую отпускную хрупкость назы­вают обратимой. Развитие обратимой отпускной хруп­кости не сопровождается какими–либо изменениями других механических свойств, а также видимыми при световой и электронной микроскопии структурными изменениями. Лишь при травлении шлифов поверхностно–активными ре­активами наблюдается повышенная травимость по грани­цам аустенистных зерен. По этим границам происходит и межзеренное хрупкое разрушение.

Читать также:  Хороший нож своими руками видео

Легирование стали Сr, Ni, Мn усиливает отпускную хрупкость. Особенно сильно охрупчивается сталь при со­вместном легировании Сr + Ni, Сr + Мn, Сr + Мn + Si и др.

Введение до 0,4–0,5 % Мo и до 1,2–1,5 % W уменьшает, а иногда полностью подавляет склонность стали к обрати­мой отпускной хрупкости; при более высоком содержании этих элементов хрупкость вновь усиливается.

В последние годы достоверно установлена связь обра­тимой отпускной хрупкости с обогащением границ зерен примесями, в первую очередь фосфором и его химически­ми аналогами: сурьмой, мышьяком, а также оловом. По степени влияния на охрупчивание элементы располагают­ся в ряд Sb, Р, Sn, Аs, где наиболее сильное влияние ока­зывает сурьма. Так, содержание сурьмы 0,001 % уже вы­зывает значительное развитие хрупкости, повышая порог хладноломкости после окрупчивающего отпуска почти на 100 °С. При таких же содержаниях фосфор смещает порог хладноломкости на 40 °С. С помощью методов электронной микроскопии (ожеспектроскопия, метод обратного рас­стояния быстрых ионов) проведена оценка сегрегации ука­занных примесей на границах зерен. Установлено, что сегрегация примесей в приграничных участках превышает объемную концентрацию этих элементов в 100–1000 раз, а толщина приграничного слоя сегрегации составляет лишь несколько атомных слоев (до 1–2 нм).

Исследованиями этими же методами выявлена значи­тельная сегрегация на границах зерен легирующих эле­ментов (Cr, Ni, Mn и др.), которые значи­тельно увеличивают термодинамическую активность приме­сей и их приток к границам. Мо и W при оптимальных содержаниях не сегрегируют к границам. Вследствие падения поверхностной энергии межзеренного сцепления более чем на порядок происходит разрушение стали по границам аустенитных зерен.

Разработаны и нашли широкое практическое примене­ние методы борьбы с обратимой отпускной хрупкостью:

1. Легирование стали молибденом (0,2–0,4 %) илиегоаналогом вольфрамом в количестве 0,6–1,2 %.

2. Ускоренное охлаждение (вода или масло) после вы­сокого отпуска.

3. Снижение содержания вредных примесей, особенно фосфора.

Необходимо также отметить, что применение вместо обычной закалки высокотемпературной термомеханической обработки (ВТМО) позволяет подавить склонность, как к необратимой, так и к обратимой отпускной хрупкости (см. рис. 2.13). Причина такого влияния ВТМО состоит в том, что при такой обработке увеличивается протяженность границ благодаря образованию зубчатых большеугловых границ и развитой структуры, вследствие чего уменьшается сегрега­ция примесей и возрастает прочность межзеренного сцепления.

Контрольные вопросы

1. Какое влияние оказывают легирующие элементы на полиморфные превращения в железе, положение характерных точек диаграммы железо–углерод?

2. Какое влияние оказывают легирующие элементы на диффузию углерода и самодиффузию железа, кинетику перлитного и бейнитного превращений, температурный интервал и кинетику мартенситного превращения и морфологию мартенсита?

3. Назовите основные механизмы упрочнения сталей и сплавов.

4. Как классифицируются легированные стали по структуре в отожженном и нормализованном состояниях?

5. Какими свойствами обладает легированный феррит?

6. Какими свойствами обладает легированный аустенит?

7.Как протекает перекристаллизация в углеродистых и легированных сталях с исходной неупорядоченной и упорядоченной структу­рой при нагреве и охлаждении?

8. Какие факторы оказывают влияние на рост зерна аустенита?

9. Как влияют легирующие элементы на устойчивость переохлажденного аустенита?

10. Какие процессы протекают при отпуске? Что называется вторичной твердостью, дисперсионным твердением и дисперсионным упрочнением?

11. Обратимая и необратимая отпускная хрупкость, причины ее обусловливающие, методы предотвращения.

Дата добавления: 2016-06-02 ; просмотров: 5401 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Отпускная хрупкость: что это такое, ее особенности

Большая часть известных сортов стали обладают отпускной хрупкостью – особым состоянием сплава, характеризующимся невысоким значением ударной вязкости. При нормальных условиях это свойство не способно оказывать влияние на прочие механические свойства материала.

На схеме представлено наглядное изображение зависимости температуры отпуска от значений ударной вязкости закаленной стали, которая характеризуется повышенной склонностью к нахождению в состоянии отпускной хрупкости. Большинство подобных материалов обладают двумя интервалами отпускной хрупкости. В процессе отпуска в диапазоне от 250 o C до 400 o C фиксируется необратимая хрупкость, а в интервале от 450 o C до 650 o C – обратимая.

Корреляция отпускной температуры и ударной вязкости

На схеме, расположенной ниже, представлена зависимость влияния значений отпускной температуры на ударную вязкость материала, обладающим определенной склонностью к отпускной хрупкости.

Что такое отпускная хрупкость

1- Процесс охлаждения осуществляют с большой скоростью,

2- Процесс охлаждения проводят постепенно, с небольшой скоростью.

Ударная вязкость различных типов стали по завершении отпуска в температурном интервале от 250 o C до 400 o C несколько ниже, чем во время отпуска при температурах меньших, чем 250 o C.

Если при нагревании хрупкой стали, отпущенной в интервале от 250 o C до 400 o C, до температуры, превышающей 400 o C, перевести ее в вязкое состояние, то процесс вторичного отпуска в интервале 250 o C – 400 o C не повлияет на значение ударной вязкости.

Читать также:  Для чего предназначены конвейеры

Сталь, пребывающая в состоянии отпускной хрупкости, обладает свойственным межкристаллитным изломом, локализованном на бывших зерновых границах. Подобная хрупкость является характерной для всех сталей, но в различной степени. Именно по этой причине средний отпуск сталей не принято использовать на практике, однако именно этот показатель способен обеспечить большое значение предела текучести.

Причины явления

Одной из главных причин такого явления, как необратимая отпускная хрупкость, можно назвать карбидообразование. Под этим термином подразумевают процесс, который происходит при разложении мартенсита: формирование карбидной пленки на зерновых границах. Эти пленки сами по себе исчезают в ходе нагревания до высокой температуры, при этом вторичный нагрев до 250 o C до 400 o C не приводит к их возникновению вновь. Кремний, присутствующий в составе некоторых сталей, способствует ингибированию процесса разложения мартенсита.

Что такое отпускная хрупкость

Ударная вязкость большинства из типов закаленных сталей после высокого отпуска в диапазоне температур от 450 o C до 650 o C может варьироваться в зависимости от того, насколько быстро протекает процесс охлаждения.

При постепенном остывании с температуры отпуска значение ударной вязкости большинства типов закаленных сталей становится ниже, по сравнению с тем значением, которое наблюдается по завершении быстрого охлаждения.

Появление отпускной хрупкости, наблюдаемой по причине медленного охлаждения при высоком отпуске, ликвидируется путем повторения высокого отпуска, однако, прибегая уже к скоростному охлаждению. Сократить ударную вязкость материала можно и повторно, при осуществлении очередного высокого отпуска, при этом скорость охлаждения должна быть несколько ниже, чем на предшествующей стадии.

Элементы, входящие в состав стали, играют значительную роль в степени восприимчивости материала к отпускной хрупкости. Последней благоприятствуют некоторые элементы, в число которых входят фосфор, марганец, воздействие хрома несколько слабее. Хромсодержащая сталь, не имеющая в своем составе прочих добавок, является маловосприимчивой к отпускной хрупкости. Добавление к материалу марганца, никеля или кремния способствует резкому увеличению ее восприимчивости к отпускной хрупкости. В частности, никель не способен самостоятельно вызывать отпускную хрупкость, однако, действуя в тандеме с хромом или марганцем, способствуют возникновению данного явления.

Добавки молибдена, вольфрама способствуют уменьшению склонности материала к проявлению отпускной хрупкости. Наибольшей эффективностью обладает именно молибден, даже в небольших количествах (около 0.2% по массе).

Теория "растворения-выделения"

Поскольку при создании конструкционных сталей прибегают к серьезным улучшениям, то обратимая отпускная хрупкость представляет собой довольно большую трудность, возникающей на пути у производителя. О причинах возникновения явления обратимой хрупкости существует целый ряд всевозможных теорий на данный счет.

Довольно долго огромное количество ученых следовало предположению о «растворении — выделении». Согласно этой теории, ударная вязкость сокращается вследствие возникновения по зерновым границам каких-либо посторонних фаз, в число которых входят фосфиды, карбиды и прочие химические соединения. После нагрева материала до температуры, соответствующей высокому отпуску, данные фазы начинают медленный переход в раствор, а постепенное охлаждение способствует выделению их из него, в результате чего сталь теряет свои прочностные характеристики.

Быстрое охлаждение материала с температуры отпуска позволяет предотвратить формирование новых фаз, способствующих уменьшению хрупкой прочности. Кроме того, теория «растворения — выделения» может объяснить и обратимый характер, который носит отпускная хрупкость.

Взаимодействие стали с некоторыми веществам ведет к растравливанию зерновых границ в структуре материала, которые пребывают в состоянии обратимой отпускной хрупкости. Невысокая устойчивость к некоторым химическим веществам этих самых зон является подтверждением того факта, что постепенное охлаждение от температуры высокого отпуска приводит к возникновению различных структурных изменений.

В частности, фиксируется сокращение ударной вязкости, однако значение иных механических характеристик, которые измеряются в условиях комнатной температуры, остается без изменений.

Подобные наблюдения могут быть объяснены тем, что ударная вязкость представляет собой характеристику, сильно зависящую от структуры материала, являющейся очень чувствительной к тому состоянию, в котором находятся границы зерен.

По мнению Л. М. Утевского, обратимая отпускная хрупкость сплавов обусловлена не образованием новых видов фаз, а изменением химического состава раствора, присутствующего в зонах рядом с зерновыми границами. Например, заполнение вышеупомянутых зон фосфором стимулирует снижение работы формирования расколов между зернами, что становится результатом развития отпускной хрупкости.

Оставить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *