Что такое неразрушающий контроль

Виды и методы неразрушающего контроля классифицируют по следующим признакам:

  • характеру взаимодействия физических полей или веществ с контролируемым объектом;
  • первичным информативным параметрам;
  • способам получения первичной информации;
  • способам представления окончательной информации.

Основные виды неразрушающего контроля:

  • Магнитный вид неразрушающего контроля основан на регистрации магнитных полей рассеяния дефектов или магнитных свойств контролируемого объекта. Его применяют для контроля объектов из ферромагнитных материалов.
    Процесс намагничивания и перемагничивания ферромагнитного материала сопровождается гистерезисными явлениями. Свойства, которые требуется контролировать (химический состав, структура, наличие несплошностей и др.), обычно связаны с параметрами процесса намагничивания и петлей гистерезиса, измеряя которые можно сделать вывод о наличии тех или иных отклонений от заданных параметров изделия.
  • Акустический вид неразрушающего контроля основан на регистрации параметров упругих колебаний, возбужденных в контролируемом объекте. Этот вид контроля применим ко всем материалам, достаточно хорошо проводящим акустические волны: металлам, пластмассам, керамике, бетоны и т.д. Наибольшее распространение нашел ультразвуковой метод, который наряду с дефектоскопией позволяет обнаруживать неоднородности структуры, определять механические характеристики материалов, анализировать напряженное состояние и решать широкий огромный круг производственных проблем контроля и диагностики. Кроме ультразвукового существуют метод акустической эмиссии, вибрационный метод контроля и другие.
  • Капиллярный контроль (контроль проникающими веществами) основан на капиллярном проникновении индикаторных жидкостей в полости поверхностных дефектов и регистрации индикаторного рисунка (цветного, люминесцентного, контрастного). Применяют для обнаружения невидимых и слабовидимых невооруженным глазом поверхностных дефектов.
  • Оптический вид неразрушающего контроля основан на взаимодействии светового излучения с контролируемым объектом. Применение инструментов (визуально-оптический контроль) типа луп, микроскопов, эндоскопов для осмотра внутренних полостей, проекционных устройств для контроля формы изделий, спроецированных в увеличенном виде на экран, значительно расширяет возможности оптического метода. Чаще всего оптические методы широко применяют для контроля прозрачных объектов. В них обнаруживают макро- и микродефекты, структурные неоднородности, внутренние напряжения (по вращению плоскости поляризации). Использование гибких световодов, лазеров, оптической голографии, телевизионной техники расширяет область применения оптических методов и повышает точность измерения.
  • Радиационный вид неразрушающего контроля основан на взаимодействии проникающего ионизирующего излучения с контролируемым объектом. В зависимости от природы ионизирующего излучения вид контроля подразделяют на подвиды: рентгеновский, гамма-, бета- (поток электронов), нейтронный методы контроля. Этот вид неразрушающего контроля пригоден для любых материалов. Основным способом радиационного (рентгеновского и гамма) контроля является метод прохождения. Имеются хорошие результаты по использованию обратно рассеянного излучения фотонов с целью рентгеновского контроля при одностороннем доступе к объекту.
  • Радиоволновой вид неразрушающего контроля основан на регистрации изменений параметров электромагнитных колебаний, взаимодействующих с контролируемым объектом. Обычно применяют волны сверхвысокочастотного (СВЧ) диапазона длиной 1 – 100 мм и контролируют изделия из материала, где радиоволны не очень сильно затухают: диэлектрики (пластмассы, керамика, стекловолокно), магнитодиэлектрики (ферриты), полупроводники, тонкостенные металлические объекты.
  • Вихретоковый вид неразрушающего контроля основан на регистрации изменения взаимодействия собственного электромагнитного поля катушки с электромагнитным полем вихревых токов, наводимых этой катушкой в контролируемом объекте. Интенсивность и распределение вихревых токов в объекте зависят от его геометрических размеров, электрических и магнитных свойств материала, от наличия в материале нарушений сплошности, взаимного расположения преобразователя и объекта. Вихретоковый вид неразрушающего контроля в различных вариантах применяют с целью обнаружения поверхностных и подповерхностных дефектов сплошности, контроля геометрических размеров, химсостава, структуры, внутренних напряжений только электропроводящих материалов.
  • Тепловой вид неразрушающего контроля основан на регистрации тепловых полей, температуры или теплового контраста контролируемого объекта. Он применим к объектам из любых материалов. Наиболее эффективным средством бесконтактного наблюдения, регистрации температурных полей и тепловых потоков является сканирующий тепловизор.
  • Течеискание используют для выявления только сквозных дефектов в деталях и в перегородках. В полость дефекта проникающее вещество заходит либо под действием разности давлений, либо под действием капиллярных сил.
  • Электрический вид неразрушающего контроля основан на регистрации электрических полей и электрических параметров контролируемого объекта (собственно электрический метод) или полей, возникающих в контролируемом объекте в результате внешнего воздействия (термоэлектрический и трибоэлектрический методы). Первичными информативными параметрами являются электрические емкость или потенциал.

Кроме названных, применяется емкостный метод для контроля диэлектрических или полупроводниковых материалов. Метод электрического потенциала применяют для контроля проводников с целью определения глубины несплошности вблизи поверхности проводника.

Неразрушающий контроль– это контроль надежности и основных рабочих свойств и параметров объекта или отдельных его элементов и узлов, который проводится без выведения объекта из работы либо его демонтажа.

Что такое неразрушающий контрольНеразрушающий контроль можно также назвать оценкой надежности неразрушающими методами или проверкой без разрушения изделия. Неразрушающий контроль приобретает особое значение при создании и эксплуатации жизненно важных изделий, компонентов и конструкций. Он выявляет различные изъяны, такие, как разъедание, ржавление, растрескивание. Неразрушающий контроль позволяет эффективно мониторить кондиции технических устройств, сооружений и зданий, дает возможность оценить своевременность и качество производимых ремонтных работ и работ по обслуживанию объекта. Неразрушающий контроль позволяет получить самые достоверные характеристики параметров, определяющих техническое состояние проверяемых объектов.

Основные методы неразрушающего контроля:

  • Ультразвуковой (ультразвуковая дефектоскопия, ультразвуковая толщинометрия);
  • Акустико-эмиссионный;
  • Магнитный (магнитопорошковый);
  • Проникающими веществами (капиллярный, течеискание);
  • Вихретоковый (вихретоковая дефектоскопия);
  • Вибродиагностический;
  • Электрический;
  • Тепловой;
  • Радиационный;
  • Радиоволновой;
  • Оптический.

Выполнение строительно-монтажных работ и контроля над ними невозможно без точных измерений и определения показателей прочности конструкций. Это залог качества. Контроль качества строительства, осуществляемый в ходе технадзора, подразумевает постоянные измерения и оценку прочности и проводится постоянно. Это гарантирует соответствие проекту геометрических параметров сооружения в пределах определенных допусков, а также прочность и долговечность конструкций. Качественно выполненные контрольные мероприятия влияют не только на качество объекта, но и на затраты на производство строительно-монтажных работ.

Читать также:  Как вешают телевизор на стену

Оценка качества строительно-монтажных работ невозможна без достоверной информации о геометрических параметрах сооружений и конструкций, оценки прочности бетона и кирпича, других материалов, определения наличия дефектов в толще конструкций и узлов. Эту информацию можно получить только в результат измерений. Измерения в строительстве проводятся различными методами, с использованием различных приборов и инструментов.

Давайте поговорим подробнее о методах неразрушающего контроля.

Акустические методы неразрушающего контроля

Основаны на регистрации и анализе параметров упругих волн, возникающих или возбуждаемых в объекте контроля. Объектом контроля могут быть материалы, полуфабрикаты и готовые изделия. Когда используются волны ультразвукового диапазона, методы можно назвать ультразвуковыми. Методы акустического контроля основаны на свойстве упругих волн создавать тесные связи с некоторыми свойствами материалов (анизотропией, плотностью, упругостью и др.) Поскольку акустические свойства твердых веществ и воздуха значительно разнятся, становится возможным выявление с помощью акустических методов неразрушающего контроля малейших дефектов, определение качества шлифовки и толщины поверхностей.

Сфера применения акустических методов довольно широка. Идею, связанную с регистрацией и анализом параметров упругих волн используют ультразвуковые дефектоскопы. Их применение имеет широкую область: все, проводящие акустические волны материалы. Методы контроля делятся на активные и пассивные, в зависимости от характера взаимодействия с контролируемым объектом. В первом случае исследуются волны, которые возникают в самом объекте, в этом случае по шумам работающего устройства можно сказать о его исправности, неисправности и даже определить характер неисправности. К активным методам относятся способы, базирующиеся на измерении интенсивности пропускаемого или отражаемого объектом акустического сигнала.

Акустические методы неразрушающего контроля используются для обнаружения как внутренних, так и поверхностных дефектов (нарушений сплошности, неоднородности структуры, межкристаллитной коррозии, дефектов склейки, пайки, сварки и т.п.). Этот метод дает возможность измерять геометрические параметры, когда доступ к изделию затруднен, а также физико-механические свойства металлов и изделий из них без их разрушения. Методы звукового диапазона (импедансный, свободных колебаний и др.) методы ультразвукового диапазона (эхо-импульсный, резонансный, теневой, эмиссионный, велосиметрический.

Магнитные методы неразрушающего контроля

Магнитные методы неразрушающего контроля предполагают анализ взаимодействия контролируемого объекта с магнитным полем. Их используют чаще всего для обнаружения внутренних и поверхностных дефектов объектов, выполненных из ферромагнитных материалов. Основные магнитные методы неразрушающего контроля – магнитопорошковый, феррозондовый, индукционный и магнитографический метод. Самый распространенный из способов неразрушающего контроля – магнитопорошковый. Он основывается на явлении неоднородности магнитного поля над местом дефекта.

Чтобы произвести контроль магнитопорошковым методом, готовят сначала поверхность контролируемого объекта, намагничивают ее и обрабатывают магнитной суспензией. Металлические частицы в неоднородном магнитном поле над повреждением притягиваются друг к другу, образуя цепочные структуры, которые сразу выявляются при осмотре деталей. Магнитно-порошковый метод широко применяется на заводах промышленности, ремонтных предприятиях. Он дает возможность выявить поверхностные трещины, микротрещины, волосовины, флокены и другие дефекты.

Остальные методы имеют схожий принцип, только вместо магнитного порошка в разных случаях для создания и регистрации магнитного поля используется катушка индуктивности (индукционный метод), магнитная лента и датчик с магнитной головкой (магнитографический метод), феррозондовый датчик, который регистрирует поля рассеивания (феррозондовый метод). Магнитографический метод чаще всего используют для контроля сварных соединений. Он дает возможность выявлять трещины, непровары, шлаковые и газовые включения и другие дефекты в сварных швах.Феррозондовый метод используется для обнаружения тех же дефектов, что и магнитопорошковый метод. Он позволяет также определять дефекты на глубине до 20 мм, с его помощью измеряют толщину листов и стенки сосудов, при наличии двухстороннего доступа.

Метод контроля проникающими веществами

Метод неразрушающего контроля проникающими веществами связан с проникновением в полость дефекта объекта, подлежащего контролю, специальных веществ. Этот метод называют капиллярным, когда речь идет о выявлении малозаметных трещин на поверхности, а при поиске сквозных способ называют «метод течеискания». При применении этого метода дефекты, окрашенные индикаторной жидкостью (пенетрантом), выявляются либо визуально, либо с помощью преобразователей.

Первоначально поверхность контролируемого объекта очищают механическим и/или химическим методом, затем наносят на нее индикаторную жидкость, заполняющую полости дефектов. Излишки пенетранта удаляют. На поверхность наносят проявитель, который выявляет признаки дефектов. Этот метод высокочувствительный, он обеспечивает простоту контроля и наглядность результатов, поэтому его применяют не только для обнаружения, но и для подтверждения дефектов, обнаруженных другими методами – ультразвуковым, магнитным и вихревых токов и другими. Из капиллярных методов наиболее распространены цветной, люминесцентный, люминесцентно-цветной, фильтрующихся частиц, радиоактивных жидкостей.

Методы течеискания базируются на регистрации индикаторных жидкостей и газов, которые проникают в сквозные дефекты контролируемого объекта. Широкое применение они нашли для контроля герметичности работающих под давлением сварных сосудов, баллонов, трубопроводов, гидро-, топливо-, масляных систем силовых установок и т.п. Наиболее известные методы течеискания: гидравлическая опрессовка, аммиачно-индикаторный метод, фреоновыф, масс-спектрометрический, пузырьковый, с помощью гелиевого и галоидного течеискателей. Течеискание с помощью радиоактивных веществ значительно повлияло на эффективность метода в сторону ее увеличения.

Вихретоковые методы контроля

Вихретоковые методы неразрушающего контроля предполагают исследование взаимодействия электромагнитного поля вихретокового преобразователя с наводимым в объекте контроля электромагнитным полем вихревых токов с частотой до 1 млн. Гц.

Этот метод служит для контроля объектов, изготовленных из проводников тока. Метод позволяет получить информацию о химическом составе и геометрическом размере изделия, о структуре материала, из которого объект изготовлен, и обнаружить дефекты, залегающие на поверхности ли в подповерхностном слое ( на глубине 2-3 мм). Наиболее часто используемый прибор этого метода –вихретоковый дефектоскоп. Принцип контроля –следующий. Катушка индуктивности возбуждает в объекте контроля вихревые токи. Их регистрирует приемные измеритель, в роли которого выступает та же самая или другая катушка. Интенсивность распределения токов в контролируемом объекте дает возможность судить о размерах изделия, свойствах материала, наличии несполошностей.

Основными методами вихретокового контроля также являются метод рассеянного излучения, который построен на регистрации рассеянных волн или частиц, отраженных от дефекта, и эхо-метод, или метод отраженного излучения, базирующийся на регистрации отраженных от дефекта поля и волны.

Читать также:  Ворота из кованных элементов

На основе метода вихревых токов разработаны и широко применяются приборы для измерения толщины листов и покрытий, диаметра проволоки и прутков. Этот метод применяется для профилактического контроля лопаток турбин газотурбинных двигателей, сварных и литых узлов элементов конструкций и др.

Вибродиагностический метод контроля

Это один из самых современных методов неразрушающего контроля. Он дает возможность следить за состоянием оборудования, не останавливая работу и не прерывая производственный процесс. Вибродиагностический метод контроля базируется на анализе вибрации, которая возникает при работе оборудования. Поскольку любая вибрация – это колебания, она представляет собой совокупность различных частот, которые можно изучить, узнать их амплитуды и по этим показателям определить, в каком состоянии находится оборудование. Конечно, всю эту информацию собирают с помощью высокочувствительной аппаратуры.

Вибродиагностический метод используют при контроле работы оборудования, имеющего в конструкции подшипники качения, гидрооборудование, колесно-редукторные блоки. С помощью этого метода регулярно производят диагностику цилиндров низкого давления, паровых турбин, «кручения» ригелей фундаментов турбин, статорных систем и т.д. Вибродиагностка применяется в энергодобывающих компаниях, на железнодорожном и морском транспорте и в области жилищно-коммунального хозяйства.

Этот метод диагностики позволяет проводить вибрационный контроль и мониторинг вращающегося оборудования, осуществлять тестовую диагностику и центровку машин, балансировку машин на месте эксплуатации, диагностику механических передач, электрических машин, выявлять дефекты подшипников скольжения и качения, ременных и зубчатых передач, дефекты компрессоров, насосов и вентиляторов, этому способу диагностики под силу даже обнаружить дефекты смазки.

Электрический метод неразрушающего контроля

Электрические способы неразрушающего контроля построены на регистрации и анализе параметров электрического поля, взаимодействующего с проверяемым объектом или возникающего в результате воздействия извне. Информативные параметры для контроля в первую очередь, – это потенциал и емкость. Для контроля проводниковых материалов используют эквипотенциальный метод, контроль проводников и диэлектриков производят с помощью емкостного метода, химический состав материала можно определить с помощью термоэлектрического метода. Помимо перечисленных способов электрического неразрушающего контроля существуют методы электронной эмиссии, электроискровой, электростатического порошка, трибоэлектрический, термоэлектрический.

Электрические методы неразрушающего контроля дают возможность выявить раковины и другие дефекты в отливках, расслоения в металлических листах, различные дефекты сварных и паяных швов, трещины в металлических изделиях, растрескивания в эмалевых покрытиях и органическом стекле. Помимо этого электрические способы контроля используются для сортировки деталей, измерения толщин пленочных покрытий, проверки химического состава и определения степени термообработки металлических изделий.

Тепловой метод неразрушающего контроля

Тепловые методы неразрушающего контроля используют регистрацию тепловых полей, температуры или теплового контраста для анализа состояния изучаемого объекта. Ведь температурное поле есть следствие происходящих в объекте процессах теплопередачи. Особенности этих процессов зависят от наличия дефектов (как внутренних, так и наружных). Параметр, который дает основную информацию о неблагополучии- разность температур между областями с дефектом и бездефектными областями исследуемого объекта. Температуру измеряют контактным и бесконтактным методом. Помимо измерения температур тепловые методы дают информацию о нарушениях сплошности, дефектах пайки многослойных соединений. Приборы, которые используются при осуществлении контроля – термоиндикаторы, пирометры, инфракрасные микроскопы и радиометры.

Тепловые методы контроля используются в основном в приборостроении для контроля радиоэлектронной аппаратуры.

Радиоволновые методы неразрушающего контроля

Радиоволновые методы неразрушающего контроля базируются на анализе изменения параметров электромагнитных колебаний, которые взаимодействуют с контролируемым объектом. Эти методы применяются для контроля диэлектриков, полупроводников, магнитодиэлектриков или тонкостенных объектов из металла – то есть тех объектов, которые изготовлены из материалов, не заглушающих радиоволны. Эти методы применяются для контроля качества и геометрических размеров изделий из стеклопластики и пластмассы, резины, термозащитных и теплоизоляционных материалов, фибры).

Радиоволновые методы неразрушающего контроля разделяют на несколько групп по характеру взаимодействия объекта с волной: прохождения, отражения и рассеивания; по параметру, который взят за основу при исследованиях: фазовые, геометрические, амплитудно-фазовые и поляризационные. Это весьма перспективные методы, пока не нашедшие должного применения в промышленности. Они дают возможность обнаружить непроклеи, расслоения, воздушные включения, трещины, неоднородности по плотности, напряжения, с их помощью можно измерять геометрические размеры и т.п.

Радиационные методы неразрушающего контроля

Эти методы включают в себя регистрацию и анализ взаимодействующего с объектом проникающего ионизирующего излучения. Название «радиационные» может меняться на «рентгеновские, «нейтронные» и другие в зависимости от вида ионизирующего излучения. Чаще всего для контроля используется гамма- и рентгеновское излучение. Работа большинства методов основывается на том, что в местах дефектов возрастает плотность потока излучения. Радиационные методы неразрушающего контроля используют при контроле качества сварных и паяных швов, литья, определения качества сборочных работ, выяснения состояния закрытых полостей агрегатов и т.п. Наиболее распространенные радиационные методы – это рентгенография, рентгеноскопия и гамма-контроль.

Оптические методы

Оптические методы неразрушающего контроля регистрируют и анализируют параметры, присущие взаимодействующему с объектом оптическому излучению. Эти методы дают возможность обнаруживать пустоты, поры, расслоения, трещины, инородные включения, геометрические отклонения и внутренние напряжения в объектах контроля.

Наружный оптический контроль применяют для обнаружения дефектов практически из любого материалов. Внутренние дефекты с помощь этого метода можно обнаружить только в прозрачных материалах. Также производится контроль диаметров и толщины с помощью оптического способа, базирующегося на явлении дифракции. Шероховатость и сферичность выявляют методы, основанные на явлении интерференции.

Преимущества оптических методов неразрушающего контроля в их простоте, применении несложного оборудования и относительно небольшой трудоемкости. Поэтому они нашли применение на различных стадиях изготовления деталей и элементов конструкций.

Оптические приборы обладают невысокой чувствительностью и достоверностью, поэтому используются только для определения достаточно крупных трещин, коррозионных и эрозионных повреждений, открытых раковин, забоин. Они применяются также для обнаружения течей, загрязнений, наличия посторонних предметов и т.д.

В строительстве методы неразрушающего контроля используются при измерении различных строительных элементов, строительных конструкций зданий и сооружений на отдельных этапах выполнения и после всех работ, контроле оборудования, приспособлений и оснастки для изготовления и монтажа элементов, разбивочных сетей и их элементов. Неразрушающий контроль используется при выполнении линейных измерений, геодезическом контроле качества выполнения строительно-монтажных работ, при определении прочности бетона методом ударного импульса или методом отрыва со скалыванием или скалыванием ребра, при определении защитного слоя бетона, при тепловизионном контроле качества устройства ограждающих конструкций и в других случаях.

Читать также:  Сильно искрят щетки двигателя электроинструмента причина

Компания «Безопасность и надёжность» оказывает услуги неразрушающего контроля за выполнением строительно-монтажных работ. Наши опытные специалисты выполнят отдельные работы либо осуществят мероприятия по неразрушающему контролю в процессе технадзора за ходом строительства Вашего объекта. Обратитесь к нам – и Вы убедитесь: у нас недорого, качественно и надежно!

Неразрушающий контроль (в переводе с английского – NDT, nondestructive testing) – это проверка, контроль, оценка надежности параметров и свойств конструкций, оборудования либо отдельных узлов, без вывода из строя (эксплуатации) всего объекта. Основным отличием, и безусловным преимуществом, неразрушающего контроля (НК) от других видов диагностики является возможность оценить параметры и рабочие свойства объекта, используя способы контроля, которые не предусматривают остановку работы всей системы, демонтажа, вырезки образцов. Исследование проводится непосредственно в условиях эксплуатации. Это позволяет частично исключить материальные и временные затраты, повысить надежность контролируемого объекта.

Благодаря неразрушающему контролю выявляются опасные и мелкие дефекты: заводские браки, внутренние напряжения, трещины, микропоры, пустоты, расслоения, включения и многие другие, вызванные, в том числе, процессами коррозии.

Классификация методов неразрушающего контроля (по ГОСТ 18353-79)

Зависимо от физических явлений, положенных в основу неразрушающего контроля, различают девять основных его видов:

— радиационный метод неразрушающего контроля;

— оптический метод НК.

Каждый из видов неразрушающего контроля может включать в себя несколько методов.

Классификация методов НК по признакам:

— первичным информативным параметрам;

— характеру взаимодействия с контролируемым (исследуемым) объектом;

— методу получения первоначальной информации.

Возможно использование нескольких методов, которые классифицируются по нескольким признакам, нескольких либо одного видов неразрушающего контроля.

Радиоволновой метод неразрушающего контроля

Первичный информативный параметр: фазовый, временной, амплитудный, поляризационный, частотный, геометрический.

Взаимодействие с контролируемым объектом физических полей: резонансный, рассеянного, отраженного, прошедшего излучений.

Классификация радиоволнового неразрушающего контроля по способу получения первоначальной информации: термисторный, термолюминофоров, диодный (детекторный), калориметрический, жидких кристаллов, болометрический, полупроводниковых фотоуправляемых пластин, голографический, термобумаг и интерференционный.

Суть радиоволнового НК заключается в фиксировании изменений показателей радиомагнитных волн, которые взаимодействуют с исследуемой конструкцией (объектом).

Электрический метод неразрушающего контроля

Первичный информативный параметр: электроемкостный, электропотенциальный.

Взаимодействие с контролируемым объектом физических полей: термоэлектрический, электрический, трибоэлектрический.

Классификация электрического метода по способу получения первоначальной информации: контактной разности потенциалов, электропараметрический, экзоэлектронной эмиссии, порошковый электростатический, рекомбинационного излучения, шумовой, электроискровой.

В основу электрического метода неразрушающего контроля положена регистрация показателей электрического поля, которое в результате воздействия извне возникает в исследуемом (контролирующем) объекте, либо взаимодействует с ним.

Акустический метод

Первичный информативный параметр: временной, спектральный, амплитудный, частотный, фазовый.

Взаимодействие с контролируемым объектом физических полей: резонансный, свободных колебаний, прошедшего, отраженного (эхо-метод) излучения, импедансный, акустико-эмиссионный.

Классификация акустического неразрушающего контроля по способу получения первоначальной информации: порошковый, пьезоэлектрический, микрофонный, электромагнитно-акустический.

Такой вид мониторинга, как акустический, заключается в снятии параметров упругих волн, возникающих и (либо) возбуждаемых в предмете контроля. Использование ультразвуковых упругих волн (частота которых более 20 кГц) дает возможность называть данный вид НК уже не акустическим, а ультразвуковым.

Вихретоковый метод неразрушающего контроля

Первичный информативный параметр: частотный, амплитудный, многочастотный, фазовый, спектральный.

Взаимодействие с контролируемым объектом физических полей: отраженного и прошедшего излечения.

Классификация вихретокового неразрушающего контроля по способу получения первоначальной информации: параметрический, трансформаторный.

Суть вихретокового метода заключается в исследовании с последующим анализом взаимодействия электромагнитного поля вихревых токов (которые наводятся в исследуемом объекте) и поля вихретокового преобразователя.

Магнитный метод неразрушающего контроля

Первичный информативный параметр: магнитной проницаемости, коэрцитивной силы, напряженности Эффекта Баркгаузена, остаточной индукции, намагниченности.

Взаимодействие с контролируемым объектом физических полей: магнитный.

Классификация магнитного неразрушающего контроля по способу получения первоначальной информации: феррозондовый, магниторезисторный, магнитографический, индукционный, пондеромоторный.

Магнитный метод НК основан на анализировании взаимодействия исследуемой конструкции с магнитным полем.

Тепловой метод

Первичный информативный параметр: теплометрический, термометрический.

Взаимодействие с контролируемым объектом физических полей: конвективный, контактный тепловой, собственного излучения.

Классификация теплового НК по способу получения первоначальной информации: калориметрический, термозависимых параметров, термобумаг, пирометрический, термокрасок, оптический, жидких кристаллов, интерференционный, термолюминофоров.

Тепловой метод неразрушающего контроля состоит в обнаружении дефектов, опираясь на анализ температурных или тепловых полей конструкции. Метод используется при наличии тепловых потоков в контролируемой конструкции или объекте.

Радиационный метод неразрушающего контроля

Первичный информативный параметр: спектральный, плотности потока энергии.

Взаимодействие с контролируемым объектом физических полей: активационного анализа, автоэмиссионный, прошедшего излучения, характеристического излучения, рассеянного излучения.

Классификация радиационного неразрушающего контроля по способу получения первоначальной информации: вторичных электронов, радиоскопический, сцинтилляционный, радиографический, ионизационный.

Суть радиационного метода НК состоит в исследовании проникающего излучения (нейтронного, рентгеновского и др.).

Метод неразрушающего контроля проникающими веществами

Первичный информативный параметр: газовый, жидкостной.

Взаимодействие с контролируемым объектом физических полей: молекулярный.

Классификация неразрушающего контроля проникающими веществами по способу получения первоначальной информации: пузырьковый, хроматический (цветной), фильтрующихся частиц, люминесцентный, ахроматический (яркостной), манометрический, люминесцентно-цветной, масс-спектрометрический, галогенный, радиоактивный, химический, акустический, устойчивых остаточных деформаций, высокочастотного разряда, катарометрический.

Обнаружение дефектов ведется с использованием веществ, которые заполняют поры, полости дефектов, после чего их можно визуально (воочию либо при помощи специальных приборов) рассмотреть и судить о степени поражения.

Зависимо от используемого вещества и вида выявленных дефектов (сквозные, поверхностные) название метода контроля может меняться с «проникающими веществами» на «течеискание», «капиллярный» и т.п.

Оптический метод неразрушающего контроля

Первичный информативный параметр: частотный, поляризационный, амплитудный, спектральный, фазовый, геометрический, временной.

Взаимодействие с контролируемым объектом физических полей: индуцированного, рассеянного, прошедшего, отраженного излучений.

Классификация оптического НК по способу получения первоначальной информации: визуально-оптический, голографический, интерференционный, рефлексометрический, нефелометрический, рефрактометрический.

Метод основан на фиксировании и анализе показателей оптического излучения.

Зависимо от целей и задач, используется тот или иной метод неразрушающего контроля. В некоторых случаях, для получения более полной и информативной картины, используется несколько методов НК.

Оставить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *