Что происходит с металлом при охлаждении

При охлаждении металл сжимается, его объем уменьшается, но удерживается расположенным вокруг металлом, длина и ширина которого не изменялась. Необходимо, чтобы дополнительное утолщение, полученное при растяжении металла, было восстановлено после охлаждения. Но так как металл имеет температуру, не соответствующую максимальной пластичности, то, сжимаясь, он поглощает небольшую часть удлинения окружающего металла.

Усиление осаживания металла осуществляется различными способами:

уменьшением скорости распространения теплоты путем создания кольца вокруг нагретой части металла из мокрой ветоши;

противодействием деформации путем нажатия на металл ручкой молотка или другим предметом около нагретой точки;

выстукиванием границ точки металла, нагретого докрасна, а затем и самой нагретой точки киянкой или рихтовочным молотком.

Наибольшее применение имеет последний способ.

Рассмотрим порядок выполнения технологических операций рихтовки различными способами.

При рихтовке нагреванием и выстукиванием горелку быстро подводят к центру пузыря, прогревают его и горелку отводят, когда разогретое докрасна пятно достигнет диаметра, равного максимум 12 мм.

При нагреве необходимо следить, чтобы металл не начал плавиться. Если нагретое пятно будет большего диаметра, это вызовет гораздо большую усадку, чем надо. Если работа выполняется в одиночку, то горелку откладывают, под лист (почти под дефект) помещают наковаленку. Быстро выстукивают не покрасневший металл вокруг нагретой точки, а затем и нагретую точку, пока металл еще остается темно-красным.

Обработку предпочтительнее вести деревянной киянкой. При рихтовке молотком-гладилкой сила удара должна быть небольшой, чтобы не создать растяжения металла вместо усаживания.

Если пузырь небольшой, то достаточно провести обработку одной точки.

Работу можно считать завершенной только тогда, когда металл остынет до температуры окружающей среды. Для ускорения охлаждения применяют мокрую ветошь или пропитанную водой губку. Если необходимы дополнительные точечные нагревы, то их делают не более двух-трех между каждым охлаждением. Их располагают вокруг центральной точки.

После охлаждения нагретого листа проводят легкую рихтовку прогретого сектора, чтобы выровнять поверхность металла, которая имела до этого деформацию.

Расположение точек усадки зависит от формы пузыря. Если пузырь круглый, то точки располагаются по радиусу. Если пузырь длинный и узкий, то точки нагрева располагают узкими рядами.

Подчеркнем, рихтовка с применением точек усадки требует опыта, который приобретается со временем. Легче проводить такие работы на округлых деталях или сильно выпуклых, чем на почти плоских панелях или панелях с малой выпуклостью. Трудность заключается в восстановлении точной длины металла. Разгонять пузырь необходимо как можно осторожнее, так как рихтовка вызывает удлинение металла, которое должно обеспечить желаемую длину металла. Стоит только нанести несколько сильных ударов, как образуется новый пузырь. В то же время, если нанесено меньшее, чем необходимо, количество ударов, то неопытному может показаться, что металл вокруг пузыря слишком вытянут. Он будет пытаться устранить это точками усадки и выполнять их в большем количестве для достижения малоуловимого равновесия металла, чем опытный жестянщик.

Рассмотрим другой способ устранения пузыря — путем наложения влажного охлаждающего кольца. Он осуществляется следующим образом. Смоченную в воде ветошь располагают вокруг нагреваемой точки, что затрудняет распространение теплоты и, как следствие, уменьшает деформацию, предшествующую нагреву металла докрасна. При этом металл получает большую усадку, чем без предварительного охлаждения, но меньшую по сравнению с применением выколотки.

Вместо ветоши можно использовать пасту. Паста выполняет такую же роль, что и влажное кольцо из ветоши, но действие оказывает более сильное.

При этом способе нагрев деформированной детали осуществляется пропусканием электрического тока большой силы и низкого напряжения. Вспомним, что точечная сварка легко нагревает докрасна металл, сжатый двумя электродами. Общий принцип действия всех промышленных аппаратов точечной сварки заключается в быстром местном нагреве металла, находящегося в контакте с угольным электродом, установленным в держателе. В зависимости от типа держателя и различной установки электродов сварка может осуществляться точками, прямыми строчками, кривыми строчками. Один провод подводит напряжение к держателю электрода, а второй соединяет лист с массой.

Для устранения пузыря этим способом проводят подготовительные работы. Сначала выправляют деформированную часть с помощью обычных инструментов. Если вмятины небольшие, можно обойтись без правки. С мест обработки удаляют краску (она является изолятором). Операция может выполняться как вручную шабером, так и шлифовальной машинкой. Зачищают также место соединения с массой.

1. Режимы нагрева металлов

Чтобы правильно вести процесс ковки, необходимо знать температуру начала и конца ковки каждого металла, каждой марки стали, т. е. знать ре­жимы нагрева .

Режим нагрева металла — это порядок и способ нагрева металла, который обеспечивает температуру и скорость, необходимые для получения заготовок, пригодных для ковки и получения из них качественных поковок.

Температура ковки для различных марок сталей не одинакова и зависит от их химического состава. Чем больше углерода встали, тем ниже тем­пература плавления и ковки .

Температура нагрева металла для ковки имеет очень важное значение, так как может влиять на качество де­талей получаемых ковкой, поэтому за ней требуется по­стоянный контроль. Для этого в кузницах с нагреватель­ными печами используют термопары и различные виды пирометров. При нагреве металла в горнах, как правило, можно приближенно определять температуру нагрева металлов на глаз по следующим цветам каления, при дневном освещении в тени:

Читать также:  Схема подключения проводки фаркопа

Цвет нагретого металла | Температура………….. °С

Темно-коричневый (заметен в темноте)…..530 … 580

Темно-вишнево-красный……………………. 730 … 770

При охлаждении металла цвет каления изменяется в об­ратной последовательности .

Температура нагрева сталей в начале ковки должна быть ниже их температуры плавления на 150…200°С. При более высокой температуре может наступить явление пережога. Во время ковки металл остывает и ковать его становится затруднительно, а затем и невоз­можно. Поэтому ковку металла следует заканчивать с температурой на 20 … 30 °С выше допускаемой темпе­ратуры ковки.

Время нагрева сталей зависит от размеров заготовок и Химического состава. С одной стороны, для уменьшения образования Окалины и увеличения производительности желательно уменьшать время нагрева. С другой, — заго­товки больших размеров, а также из высокоуглеродистых и высоколегированных сталей следует нагревать посте­пенно и даже ступенчато.

2. Дефекты при нагреве и меры их предупреждения

При нагреве заготовок в них могут появиться следую­щие дефекты:

— окалинообразование или угар,

— недогрев металла,
— перегревмстальной заготовки,

Окалинообразование или угар получается в результате образования оксидов железа на поверхности заготовки яри ее нагреве. Образование окалины обычно называют угаром металла.

Окалина — это хрупкое и непрочное вещество с со­держанием до 30% железа. Угар стали, в результате об­разования окалины, может достигать 4 … 5% от массы заготовки за один нагрев в горнах и несколько меньше (до 3%) в нагревательных печах. Если учесть, что при ковке заготовку приходится нагревать несколько раз (иногда до шести), то станет ясно, какое большое коли­чество металла идет в отходы в результате угара металла.

Количество образующейся окалины зависит от ско­рости и температуры нагрева метелла, формы заготовки, химического состава стали, вида топлива, пламени и дру­гих факторов.

Обезуглероживание происходит одновременно с окисле­нием железа и выражается в том, что при нагреве стали углерод, содержащийся в ее верхних слоях, выгорает и сталь становится более мягкой. Значит химический со­став стали изменится и не будет соответствовать той марке, из которой должна быть изготовлена деталь. При умень­шении содержания углерода уменьшается прочность и твердость стали, ухудшается способность ее закалива­ться. Глубина обезуглероженного слоя может достигать 2 … 4 мм, поэтому обезуглероживание опасно и для мел­ких поковок, имеющих небольшие припуски и для поковок, которые после механической обработки подверга­ются закалке. Низкоуглеродистая сталь может не зака­литься.

Процесс обезуглероживания начинается при темпера­туре 800 … 850 °С. Интенсивность обезуглероживания зависит от содер­жания углерода в стали.

Чем больше углерода, тем мед­леннее идет обезуглероживание .

Недогрев — это такой нагрев металла, при котором заготовка нагрелась неравномерно по сечению или участ­кам длины. Очевидно, что такую заготовку нельзя вы­нимать из горна или печи и ковать. Если заготовка с од­ной стороны имеет белый цвет каления, а с другой еще желтый или красный, то из нее будет затруднительно получить поковку требуемой формы. Недогрев заготовок по толщине нельзя обнаружить по цвету каления. Поэ­тому необходимо знать расчетную или опытную норматив­ную величину продолжительности нагрева различных по сечению заготовок и строго ее придерживаться. Недогрев может появляться при плохом тепловом ре­жиме.

Перегрев нельзя обнаружить по внешнему виду нагре­той заготовки и даже в процессе ее ковки. Деталь, изго­товленная из перегретого металла, быстро ломается, так как перегретый металл имеет крупнозернистую струк­туру и поэтому не прочен. Сильно перегретая заготовка иногда разрушается уже при ковке — в углах появляются трещины. Для предотвращения перегрева не следует допу­скать выдержки заготовки в горне или печи при высокой температуре больше, чем рекомендуется расчетами или нормативами.

Пережог является опасным дефектом нагрева металла. Явление пережога объясняется следующим образом. При температуре выше 1250 … 1300 °С зерна металла стано­вятся очень крупными, а связь между ними настолько ослабевает, что начинает проникать кислород и сталь при действии на нее небольших сил разрушается. Переж­женную сталь необходимо отправлять на переплавку.

Пережог можно обнаружить по внешнему виду нагре­ваемого металла. Поверхность металла при пережоге имеет ослепительно белый искрящийся цвет. При пере­движении пережженной заготовки от нее отлетают ярко-белые искры.

Трещины и раскалывание поковок являются дефектами нагрева металла. Наиболее часто поковки с такими дефек­тами получают из легированных и инструментальных ста­лей вследствие несоблюдения режимов нагрева их и про­должения ковки с температурой ниже температуры окон­чания ковки.

3. Изменения, происходящие в металлах при нагреве и ковке

Пластичность стали увеличивается при нагреве, т. е. когда в ней начинаются внутренние превращения, состоя­щие в укрупнении зерен и ослаблении связей между ними. Поэтому прочность стали уменьшается, она становится мягкой и пластичной. Это позволяет с меньшими усилиями деформировать металлы.

Зернистое строение металла изменяется в зависимости от температуры и скорости деформирования его. Соот­ветственно этим воздействием на металл изменяется и прочность его.

Износостойкость стальной заготовки. Чем быстрее будет проходить процесс де­формации металла от начала ковки до конца ковки, тем металл будет прочнее, следовательно, ковку горячего металла рекомендуется проводить как можно быстрее и сильными ударами, потому что при ковке сильно нагре­того металла слабыми ударами в конце ковки он получа­ется – с крупнозернистым строением и поковка будет не прочной. Если требуется небольшая деформация металла, то перед ковкой его можно нагревать несколько ниже тем­пературы начала ковки, имея в виду, что ковка будет закончена до наступления критической тем­пературы (723 °С).

Читать также:  Компрессор для аквариума самодельный

При продолжении ковки ниже критической температу­ры зерна пластически деформируются (вытягиваются) и остаются в напряженном состоянии, потому что при низкой температуре они уже не успевают переформиро­ваться в более мелкие зерна. После этого металл утрачи­вает пластичность и становится более прочным, твердым и хрупким.

Упрочнение металла под действием пласти­ческой деформации называется Наклепом или Нагартовкой . Наклеп не желателен, так как при этом, кроме хрупкости, резко уменьшается свойство металла обрабаты­ваться резанием.

Если у вас возникли проблемы с удалением застрявшего болта, общий совет — нагревать болт. Но если металл расширяется при нагревании, не станет ли нагрев болта более трудным для его удаления? Каким образом нагревание болта отклеивает его?

Ответы

Ответ на удивление прост: болт расширяется, но гайка расширяется больше .

То, что здесь происходит, это старое доброе тепловое расширение:

  • Болт нагревается и расширяется наружу, его радиус увеличивается
  • Гайка нагревается и . расширяется наружу, радиус увеличивается

Теперь, поскольку радиус гайки немного больше, чем у болта, и поскольку увеличение пропорционально длине покоя, гайка расширяется немного больше.

Железо имеет тепловой коэффициент в приблизительном поле 10 -5 / K. Это означает, что для каждого повышения температуры на 1 К у вас есть увеличение размера на 10 -5 : 1 м стержень становится длиной 1,00001 м.

Если у вашего болта r = 1,5 мм, а у гайки R = 1,501 мм, что произойдет, если температура увеличится на 500 K? Что ж:

  • r = 1,5 * (1 + 500 * 10 -5 ) мм = 1,5075 мм
  • R = 1,501 * (1 + 500 * 10 -5 ) мм = 1,508505 мм

Как видно, до нагревания R — r = 1 мкм, а после R — r ≈ 1.001 мкм. Это увеличилось!

Обратите внимание, что мои цифры довольно дикие и используются только для примера. Я уверен, что я неправильно понял начальные значения, но я надеюсь, что они все равно помогут донести сообщение.

Вот некоторые грубые диаграммы, которые помогут объяснить, как это работает.

Что происходит с металлом при охлаждении
Болт застрял в отверстии

Когда болт нагревается, он расширяется. Поскольку стержень болта ограничен, он не может расширяться внутри отверстия.

Что происходит с металлом при охлаждении
Болт расширяется в направлении зеленой стрелки, но не может расширяться в направлении красных стрелок.

Как болт остывает, он сжимается. Сокращение, однако, не ограничено. Это означает, что болт может сжиматься во всех направлениях, делая его немного меньше.

Что происходит с металлом при охлаждении
Болт может сжиматься во всех направлениях.

Как только болт остынет, он должен быть меньше и его легче извлечь.

Фактическая причина, по которой это обычно работает, заключается в том, что ржавчина значительно больше, чем сталь, из которой она ржавеет, именно поэтому болт застревает в первую очередь. В некоторых других случаях тепловые работы заключаются в том, что болт был применен с помощью резьбонарезного приспособления, для удаления которого требуется нагрев (если он выходит без следов ржавчины, это очень хорошая ставка)

Многие виды ржавчины содержат «химически связанную воду» и теряют эту воду (и сжимаются) при достаточном нагревании.

Металл, расположенный в кольце, расширяется наружу при нагревании. Представьте себе нагретое кольцо из тонкой проволоки — оно расширяется в основном по всей длине, увеличивая как внутренний, так и внешний диаметры. То же самое происходит с материалом вокруг отверстия для болта.

Вообще, я стараюсь нагревать окружающий кусок, а не сам болт. Однако, даже если болт нагревается напрямую, проводимость обычно приводит к нагреву окружающего материала и, следовательно, расширению канала.

Рассмотрим шайбу или другое металлическое кольцо или диск с отверстием в нем. Когда кольцо нагревается, мы ожидаем, что кольцо расширится, и эксперименты подтвердят, что оно расширяется. Но расширяется ли отверстие в кольце, сжимается или остается того же размера?

. [T] намек на то, что вы делаете, когда пытаетесь открыть банку с масоном, и металлическая крышка с завинчивающейся крышкой застряла. Либо постучите по крышке ложкой (чтобы попытаться освободить застрявшую часть крышки), либо поместите крышку под горячую воду. Вы делаете последнее, потому что знаете, что металлическая крышка будет расширяться больше, чем стеклянная банка, и поэтому будет легче снять крышку.

И говоря, что металлическая крышка будет расширяться больше, чем стеклянная банка, мы действительно имеем в виду, что отверстие в крышке будет расширяться.

По моему опыту, вам нужно нагреть замерзший болт, пока он не вздуется, не станет красным и не станет мягким, и вынуть его, пока он горячий и мягкий. Нагревание болта и его охлаждение никогда не помогало мне. Когда металл сжимается, болт захватывает; это обычно не ослабляет . это, вероятно, ухудшает ситуацию.

То же самое верно и для питьевых стаканов , которые застряли вместе . холод, сжатие является причиной заедания .

Читать также:  Поверки нивелира с цилиндрическим уровнем

@Vladimir Cravero (извините, не хватает представителя для ввода комментария) .

Я думаю, что разъяснение ответа необходимо. Орех не расширяется «больше», в итоге он становится больше, но прирост в% такой же.

Мое восприятие эффекта нагревания состоит в том, что не только расширяются болт и гайка или блок, но также и пространство между ними, не забывайте об этом.

немного большее пространство между ними, легче удалить. 🙂

Я думаю, что есть несколько факторов, которые способствуют этому эффекту, но я думаю, что один не был упомянут. Еще один способ освободить застрявший болт — это сильно ударить по нему. Как правило, это то, что вы делаете что-то большое, как клапан, но я думаю, что основная проблема та же. Что касается ржавчины, я ожидаю, что это может разрушить хрупкую структуру оксида. Другим фактором является то, что существует два типа трения. Есть статическое трение и кинетическое трение. Рассмотрим тяжелую (заполненную) картонную коробку на полу. Если вы попытаетесь сдвинуть его, он будет изначально «застрял». Как только коробка начинает двигаться, она скользит намного легче. Это та же самая причина, по которой плохо тормозить машину. Как только резина начинает скользить, трение значительно уменьшается.

Температура — это мера средней кинетической энергии молекул вещества. То есть молекулы движутся в любом веществе теплее абсолютного нуля, и чем быстрее они движутся, тем выше температура. Когда вы нагреваете что-то, вы добавляете кинетическую энергию в систему. Это буквально заставляет молекулы болта двигаться все быстрее и быстрее. В твердом теле молекулы не движутся свободно в пространстве и по существу вибрируют. На следующем изображении показано, как молекулы металла движутся при нагревании.

Что происходит с металлом при охлаждении

Я думаю, что это энергичное движение само по себе может создать тот же эффект, что и ударная волна, вызванная резким ударом. Это и неравномерное изменение размера болта и гайки может сломать статическое трение и / или разрушить хрупкую ржавчину. Я знаю, что если у вас есть ржавая чугунная сковорода, одно из решений — поставить ее на горячий огонь, и ржавчина просто отвалится.

Поскольку тепло не распространяется мгновенно, гайка будет расширяться больше, чем болт . если вы правильно рассчитаете время . что нетривиально. Для подшипника, а не гайки / болта, этот [индукционный] нагрев является промышленным методом удаления, как показано в этом видео, например, и даже в большей степени для крепления. В этом случае удаление происходит мгновенно, когда кольцо подшипника достаточно нагрето. Проблема с гайкой / болтом заключается в том, что большое количество тепла могло перейти к болту, возможно, до того, как вы закончите снятие гайки. Цитирую практикующего этого искусства: «Вы хотите нагреть гайку, а не болт».

Проблема еще более усугубляется тем фактом, что нет единого способа сделать это. В этом другом видео вы можете видеть, что гайка становится намного белее, чем болт, что означает, что она нагревается намного сильнее при нагревании. Подвох в том, что к тому времени, когда гайка снята, ни один из них больше не светится [в этом последнем видео], поэтому мы не можем визуально определить их температуру [разницу]. Воздух, однако, намного лучше изолятор, поэтому я подозреваю, что болт охлаждается быстрее, чем гайка, потому что он вступает в контакт с большим количеством металла, который действует как радиатор. Видео с тепловизором было бы определенным доказательством, но я не смог его найти. В описании этого последнего видео также говорится, что коррозионные соединения ослабляются при нагревании, что также вполне может быть правдой, но я не проверил науку об этом; это утверждение также предполагает, что эти связи не сразу восстанавливаются при охлаждении.

И для сценария, изображенного в ответе самого спрашивающего: на практике это не работает так. Если вы смотрите вторую половину этого получасового видео , чувак тщательно нагревает рамку вокруг самого болта, и для достижения успеха требуется много времени, терпения и тщательности, когда «гайка» — это большой кусок.

У меня есть простой ответ, что никто не сказал, что головка болта расширяется от поверхности, ослабляя натяжение нитей, таким образом делая его достаточно свободным, чтобы отключиться. Иногда болты слишком туго, даже если они не ржавые.

Положите пенни в дверной косяк и закройте его. Дверь будет почти невозможно открыть, потому что трение удержит ее на месте. Сгибание остальной части двери предотвратит ее перемещение. Ржавый болт, по сути, тот же принцип — многие мелкие соединения, образованные на резьбе болтов окисленным металлом, препятствуют его вращению.

Высокая температура и расширение металла просто служили разрушению этих связей. Это не имеет ничего общего с термодинамикой или любой другой научной ерундой. Это простое механическое действие расширяющегося металла, разрушающего ржавчину.

Оставить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *