Быстрорежущие стали твердые сплавы и их применение

БЫСТРОРЕЖУЩАЯ СТАЛЬ

Быстрорежущие стали твердые сплавы и их применение

Теплостойкие стали высокой твердости, называемые быстрорежущими или быстрорезами, – группа высоколегированных инструментальных сталей, которые благодаря составу и специальным режимам термообработки на вторичную твердость имеют очень высокое иносо- и красностойкость(до 550 – 600°С). Они сочетают теплостойкость (600-700˚С) с высокой твердостью (HRC 63-70) и повышенным сопротивлением пластической деформации. В результате применениябыстрорежущих сталей стало возможным увеличить скорость резания в 2-4 раза (а более новых сталей с интерметаллидным упрочнением даже в 5-6 раз) и повысить стойкость инструментов в 10-40 и более раз по сравнению с получаемыми для инструментов из нетеплостойких сталей. Эти преимущества проявляются при резании: с повышенной скоростью, т.е. в условиях нагрева режущей кромки, или при меньшей скорости, но с высоким давлением. Для понимания особенностей свойств и области использования их важно, что снижение их твердости на HRC 2-4 по сравнению с получаемой максимальной может сопровождаться ухудшением вязкости, прочности и износостойкости. Быстрорежущая сталь необходима в использовании в состоянии высокой твердости и при работе без больших динамических нагрузок.

Теплостойкость быстрореза создается специальным легированием и закалкой с очень высоких температур: 1200-1300˚С. Основные легирующие элементы – вольфрам или вольфрам вместе с молибденом. Многочисленные быстрорежущие стали целесообразно различать по главному свойству: умеренной, повышенной и высокой теплостойкости. Стали умеренной и повышенной теплостойкости имеют относительно высокое содержание углерода (≥0,6-0,7%) и одинаковую природу упрочнения; вторичная твердость создается выделением карбидов при отпуске.

Быстрорежущая сталь умеренной теплостойкости сохраняют твердость HRC 60 после нагрева (4ч) до 615-620˚С. Они пригодны для резания сталей и чугунов с твердостью до HB 250-280, т.е. большинства конструкционных материалов, и используются наиболее широко (78-80% от общего производства быстрорежущих сталей). Характерными представителями этой группы являются стали Р18 и более рационально легированные: вольфрамовые (сталь Р12) и вольфрамомолибденовые (сталь Р6М5).

Стали повышенной теплостойкости имеют высокое содержание или углерода (азота) или же их легируют дополнительно кобальтом. Они сохраняют твердость HRC 60 после нагрева 630-650˚С. Стойкость инструментов при правильном использовании этих сталей в 1,5-4 раза выше, чем у сталей умеренной теплостойкости.

Стали высокой теплостойкости сохраняют твердость HRC 60 после нагрева 700-730˚С. Природа их упрочнения принципиально другая – за счет выделения интерметаллидов. Эти стали при правильном назначении, например для резания многих труднообрабатываемых материалов, обеспечивают повышение стойкости в 10-15 и более раз.

Маркировка быстрорежущих сталей:

Число после буквы «Р» указывает на среднее содержание вольфрама (в процентах от общей массы, буква В пропускается). Затем после букв М, Ф и К указывают процент молибдена, ванадия и кобальта.

Читать также:  Выводы полевого транзистора называются

1.Химический состав быстрорежующих сталей (ГОСТ 19265-73)

Из группы высоколегированных сталей для изготовления режущих инструментов используются быстрорежущие стали с высоким содержанием вольфрама, молибдена, кобальта, ванадия.

Современные быстрорежущие стали можно разделить на три группы.

К сталям нормальной теплостойкости относятся вольфрамовые Р18, Р12, Р9 и вольфрамомолибденовые Р6М5, Р6М3, Р8М3. Эти стали имеют твердость в закаленном состоянии 63. 66 HRC, предел прочности при изгибе 2900. 3400 МПа, ударную вязкость 2,7. 4,8 Дж/м2 и теплостойкость 600. 650 °С. Указанные марки сталей получили наиболее широкое распространение при изготовлении режущих инструментов.

Они используются при обработке конструкционных сталей, чугунов, цветных металлов, пластмасс. Иногда применяются быстрорежущие стали, дополнительно легированные азотом (Р6АМ5, Р18А и др.). Легирование азотом повышает режущие свойства инструмента на 20. 30 %, твердость – на 1- 2 единицы HRC.

Стали повышенной теплостойкости характеризуются повышенным содержанием углерода — 10Р8МЗ, 10Р6М5; ванадия — Р12ФЗ, Р2МЗФ8, Р9Ф5; кобальта — Р18Ф2К5, Р6М5К5, Р9К5, Р9К10, Р9М4К8Ф и др.

Твердость сталей в закаленном состоянии достигает 66. 70 HRC, они имеют более высокую теплостойкость (до 620. 670 °С).

Это дает возможность использовать их для обработки жаропрочных и нержавеющих сталей и сплавов, а также конструкционных сталей повышенной прочности и закаленных. Период стойкости инструментов из таких сталей в 3—5 раз выше, чем из сталей Р18, Р6М5.

Стали высокой теплостойкости характеризуются пониженным содержанием углерода, но весьма большим количеством легирующих элементов — В11М7К.23, В14М7К25, ЗВ20К20Х4Ф. Они имеют твердость 69. 70 HRC, и теплостойкость 700. 720 °С.

Наиболее рациональная область их использования — резание труднообрабатываемых материалов и титановых сплавов. В последнем случае период стойкости инструментов в 30 – 80 раз выше, чем из стали Р18, и в 8 – 15 раз выше, чем из твердого сплава ВК8. При резании конструкционных сталей и чугунов период стойкости возрастает менее значительно (в 3 – 8 раз).

ОСНОВНОЙ НЕДОСТАТОК всех быстрорежущих сталей – высокая стоимость легирующих компонентов. Поэтому, в последнее время, быстрорежущие стали применяются очень ограниченно.

Молибден является химическим аналогм вольфрама, действующим более эффективно. Замена вольфрама на молибден несколько снижает теплостойкость стали, но значительно увеличивает прочность на изгиб (sи). Сохранение теплостойкости возможно при условии замены вольфрама на молибден в соотношении 1:1,5.

Читать также:  Стабилизатор 78l05 схема включения

С увеличением содержания молибдена в стали до 3 % и более резко увеличивается её теплопроводность. За счёт этого, тепло из зоны резания отводится хорошо и температура лезвий инструмента не увеличивается. Следовательно, повышается теплостойкость стали.

Высокая прочность на изгиб (sи) и способность хорошо отводить тепло из зоны резания обусловили широкое применение сталей Р6М5 для изготовления осевого инструмента (свёрла, зенкеры, развёртки).

Благодаря сверхвысокой скорости охлаждения стали при распылении ее расплава в среде инертных газов и специальной технологии спекания гранул порошковая быстрорежущая сталь обладает рядом положительных свойств: однородной мелкозернистой структурой с равномерным распределением карбидов по сечению, повышенными прочностью и ударной вязкостью, хорошей шлифуе- мостью и малой деформируемостью после термообработки. В настоящее время поставляют прутки диаметром 30. 150 мм марок Р6М5ФЗМП, Р6М5К5МГТ, Р9М4К8МП и др.

На основе порошковой металлургии были созданы карбидо- стали марок Р6М5К5 + 20 % Т1С и РЗМЗФЗ + 20 % Т1С с твердостью после термообработки НЯС 67. 71.

Используя фазовое превращение и дисперсное твердение, можно в карбидных сталях получить различную твердость в зависимости от применяемой термической обработки.

Металлокерамические твердые сплавы, обладая высокой твердостью, износостойкостью, теплостойкостью, достигающей 900. 1000 °С, позволяют производить высокопроизводительную обработку различных материалов.

Для их получения используют порошки твердых и тугоплавких карбидов вольфрама, титана, тантала, смешанных в различных пропорциях с порошком кобальта, который служит связкой. Из полученной смеси прессуют пластинки, спекают при

1500. 1900 °С, затем припаивают к корпусам инструментов либо закрепляют на них механическим способом.

Твердые сплавы подразделяются на три группы: вольфрамовые (ВК) — ВК8, ВК10, ВК20 и др.; титановольфрамовые (ТК) — Т5К10, Т30К4 и др.; титанотанталовольфрамовые (ТТК) — ТТ7К12, ТТ7К15 и др. Цифра после буквы К обозначает процентное содержание кобальта, после буквы Т — титана или титана и тантала в сумме, остальное — карбид вольфрама. С увеличением содержания кобальта в сплаве прочность и вязкость его повышаются, а твердость и износостойкость снижаются.

Твердые сплавы по сравнению с инструментальными сталями имеют пониженную теплопроводность. Они очень чувствительны к перепаду температур.

Твердые сплавы имеют более высокую, чем у быстрорежущих сталей, твердость, но значительно меньшую прочность. Теплостойкость выше, чем у быстрорежущих сталей. Высокая теплостойкость твердых сплавов позволяет значительно увеличить скорость резания. Однако низкая прочность и вязкость ограничивают применение твердых сплавов при переменных нагрузках и ударах.

Читать также:  Как пользоваться ножами для вырубки без машинки

Вольфрамовые твердые сплавы имеют твердость до Н11С 91, предел прочности при изгибе до 1700 МПа, теплостойкость

800.. .850 °С . В сплавах ВКЗ-М, ВК4-В, ВК6-ОМ буква О указывает на особо мелкозернистую структуру, буква М — на мелкозернистую структуру карбидов, а буква В на крупнозернистую структуру карбидов. Мелкозернистая структура сплава повышает его износостойкость, но уменьшает прочность, крупнозернистая — наоборот.

Титановольфрамовые твердые сплавы имеют теплостойкость

850.. .900 °С, предел прочности при изгибе 1000. 1700 МПа, твердость НЯА 87. 92. Эти сплавы используют для обработки углеродистых и легированных сталей.

Титанотанталововольфрамовые твердые сплавы имеют теплостойкость 750 °С, предел прочности при изгибе 1350. 1700 МПа, твердость НЯА 87. 90.

Твердые сплавы содержат значительно больше дефицитного вольфрама по сравнению с быстрорежущими сталями. Разработано большое количество марок безвольфрамовых твердых сплавов (БВТС) на основе сложного карбида титана и ниобия, карбида титана и карбонитрида титана. Но БВТС не является универсальным материалом для всех сталей и сплавов. В нашей стране разработан ряд БВТС: КНТ-20, КНТ-30, ТМ-1, КТС-2, КНТ-16, ТН-20 и др. Но эти сплавы обладают рядом отрицательных свойств. Низкая сопротивляемость БВТС пластической деформации ограничивает область применения при черновых и получистовых операциях. При чистовой механообработке они могут конкурировать со сплавами ТК и ВК.

В табл. 5.15 приведено примерное назначение некоторых твердых сплавов.

Примерное назначение твердых сплавов

Чистовое точение с малым сечением среза, окончательное нарезание резьбы, развертывание отверстий при обработке серого чугуна и цветных металлов

Чистовая и получистовая обработка твердых, легированных и отбеленных чугунов, закаленных сталей и некоторых марок нержавеющих, высокопрочных и жаропрочных сталей и сплавов на основе вольфрама и молибдена

Обработка углеродистых и легированных сталей при тонких сечениях среза на малых скоростях

Сверление, зенкерование, развертывание, фрезерование и зубофрезерование стали. Обработка коррозионно-стойких и жаропрочных сталей и сплавов, в том числе сплавов титана

Тонкое точение с малым сечением среза, нарезание резьбы и развертывание отверстий незакаленных и закаленных углеродистых сталей

Черновое точение при неравномерном сечении среза и непрерывном резании, получистовое и чистое точение при прерывистом резании, черновое фрезерование сплошных поверхностей, рассверливание отверстий и черновое зенкерование сталей

Все виды строгания углеродистых и легированных сталей. Обработка легированного чугуна, аустенитных сталей, ковкого чугуна, автоматной стали

Обработка труднообрабатываемых материалов, нержавеющих сталей аустенитного класса

Оцените статью
Добавить комментарий

Adblock detector