Ацетилен газ с резким запахом

Ацетилен газ с резким запахомАцетилен газ с резким запахом

ОСНОВНЫЕ СВОЙСТВА ГОРЮЧИХ ГАЗОВ

Для процессов газопламенной обработки применяются различные горючие газы и пары жидких горючих (керосина и бензина), при сгорании которых в кислороде образуется высокотемпературное пламя. По химическому составу эти горючие, за исключением водорода, представляют собой либо углеводородные соединения, либо смеси различных углеводородов, причем в последнем случае в качестве составляющих обычно входит водород, окись углерода и негорючие примеси.

Виды горючих, их состав и основные свойства приведены в табл. 1, а данные о пределах взрываемости газовоздушных и газокислородных смесей — в табл. 2.

Преимущественное применение для газопламенной обработки получил ацетилен С2Н2, являющийся наиболее эффективным, а также универсальным горючим. Однако все большее значение, в первую очередь для процессов, не требующих нагрева металла до температуры плавления, приобретают более дешевые горючие газы, называемые заменителями ацетилена: пропан, бутан и их смеси, коксовый газ, природные и городские газы и др., а также жидкие горючие.

В нашей стране имеются богатейшие месторождения природных газов, и для широкого их использования в целях газопламенной обработки важное народнохозяйственное значение имеет дальнейшее развитие сети газопроводов и газораздаточных станций.

Ацетилен газ с резким запахом

Ацетилен газ с резким запахом

Ацетилен газ с резким запахомСтепень пригодности и экономическая целесообразность применения отдельных горючих для газопламенных работ определяются в основном следующими их свойствами:

1) низшей теплотворной способностью (теплотворностью);

2) удельным весом газа;

3) скоростью воспламенения и температурой пламени;

4) теоретическим, оптимальным и рабочим соотношениями между кислородом и горючим в смеси;

5) тепловой мощностью и удельным тепловым потоком пламени;

6) удобством и безопасностью при получении, транспортировке и использовании.

Низшая теплотворность горючего Qн выражает количество тепла, выделяющегося при полном сгорании 1 м 3 или 1 кг горючего. Для чистых углеводородов и водорода она является физической константой. Для сложных газовых смесей, состав которых известен, теплотворность в ккал/м 3 (при 20° С и 760 мм рт. ст.) может быть подсчитана по формуле

В этой формуле содержание элементарных составных частей берется в объемных процентах. Символом CmHm обозначена сумма прочих высокомолекулярных углеводородов в газе. Коэффициенты перед обозначениями составных частей получены как значения 0,01 Qн для каждого элементарного горючего, причем Qн берется в ккал/м 3 .

Ниже приводятся примеры расчета теплотворности, удельного веса и потребного количества кислорода для некоторых горючих газов.

Низшая теплотворность будет равна

Qн=206·85+275·12+140·3=21230 ккал/м 3

Удельный вес газа для сложных смесей yсм может быть определен по формуле

где r1, r2, . rn — содержание элементарных частей смеси в % об

где y1, y2, . yn — удельный вес элементарных частей смеси в кг/м 3

Удельный вес составляющих частей (при 20° С и 760 мм рт. ст.) УСН4 =0,67; УС2Н6 = 1,34; УС3Н8 = 1,88; УС4Н10 = 2,54; УС5Н12 = 2,98; УN2 = 1,16; УСО2 = 1,84.

По формуле удельный вес газовой смеси сотавит:

yсм = (94·0,67 + 1,2·1,34 + 0,7·1,88 + 0,4·2,54 + 0,2·2,98 + 3,3·1,16 + 0,2·1,84)0,01=0,717 кг/м 3

Скорость воспламенения и температура пламени для различных горючих в смеси с кислородом имеют разные значения.

Скоростью воспламенения называется скорость движущегося пламени в направлении перпендикулярном к поверхности воспламенения.

Наивысшая скорость воспламенения будет у ацетилено-кислородной смеси Uв С2Н2=12,5-13,7 м/сек. Для заменителей ацетилена эта скорость значительно ниже, например у сжатого метана Uв СН4=2,4-3,3 м/сек, у сжиженных газов: пропана Uв С3Н8=3,8-4,5 м/сек, у бутана Uв С4Н10=3,5-3,7 м/сек.

Большая скорость воспламенения смеси кислорода с ацетиленом создает условия для наиболее высокой температуры сварочного пламени в зоне, применяемой для расплавления металла.

Теоретическое соотношение Вmax между количеством кислорода Vк и горючего Vг , требуемое для полного сгорания, определяется элементарным составом горючего газа. Для сложных газовых смесей оно может быть определено по формуле

Пример 3. Коксовый газ имеет состав: 59% Н2; 25% СН4; 2,4% С3Н8; 7,3% СО2; 2,2% СО2; 0,6% О2; 3,5% N2. Количество кислорода, необходимое для полного сгорания 1 м 3 горючего, составит

Вmax = 0,01(0,5·59 + 2·25 + 5·2,4 + 0,5·7,3 — 0,6) = 0,945 м 3

Оптимальное соотношение между количеством кислорода и горючего в смеси , т. е. такое, при котором обеспечивается наибольшая эффективная мощность пламени, всегда будет на 10-15% меньше теоретического соотношения ввиду участия в горении также кислорода воздуха, подсасываемого различными зонами пламени. Пламя при оптимальном соотношении будет иметь окислительный характер и может быть использовано лишь для процессов нагрева (резка, закалка и др.), но не для сварки.

Рабочее соотношение между кислородом и горючим газом в смеси для выполнения сварки должно быть меньше оптимального во избежание окисления, для процессов резки в целях повышения производительности — близким к оптимальному. Обычно применяемые рабочие соотношения при выполнении резки низкоуглеродистой стали близки к оптимальным и составляют:

Метан (или природный газ) = 1,5

Коксовый газ = 0,8

Пропано-бутановая смесь = 3,5

Нефтяной газ среднего состава = 2

Сланцевый газ = 0,7

Тепловую эффективность заменителей ацетилена принято выражать посредством коэффициента замены ψ, представляющего собой отношение расхода газа-заменителя к расходу ацетилена при одинаковом тепловом воздействии на металл:

Значения коэффициентов замены для процессов I группы (сварка, пайка, разделительная резка, закалка) приведены в табл. 1. Для процессов II группы, в частности для поверхностной резки, значение коэффициентов замены в 1,5-2,5 раза больше.

АЦЕТИЛЕН

Ацетилен является основным горючим для газопламенной обработки металлов благодаря высоким теплофизическим свойствам. Он относится к группе непредельных углеводородов ряда СnН2n-2.

Химическая формула его С2Н2, а структурная Н — С = С — Н. Важнейшие физические константы ацетилена следующие:

Ацетилен газ с резким запахом

Технический ацетилен, применяемый для газопламенной обработки, в нормальных условиях представляет собой горючий бесцветный газ с резким запахом, объясняемым наличием примесей,

в частности сернистого водорода H2S и фосфористого водорода РН3, образующихся при получении ацетилена из карбида кальция в результате разложения содержащихся в нем примесей — сернистого кальция CaS и фосфористого кальция Са3Р2. Примеси повышают взрывоопасность ацетилена и делают его вредным для здоровья.

В жидком и твердом виде ацетилен в технике не применяется ввиду крайней взрывчатости.

Ацетилен газ с резким запахом

Газообразный ацетилен также имеет склонность к взрывчатому распаду при повышенной температуре и давлении. Взрывоопасными являются и смеси ацетилена с воздухом и кислородом (см. табл. 2). Взрывчатый распад происходит в том случае, когда температура технического ацетилена, находящегося под давлением свыше 2 кгс/см 2 , превышает 500° С.

Читать также:  Карта контроля технологического процесса образец

При повышении температуры ацетилена его распаду часто предшествует процесс полимеризации, т. е. соединение нескольких молекул в одну; в результате получаются другие соединения углеводородного ряда: бензол С6Н6, стирол С8Н8, нафталин C10H10 и др. В присутствии катализаторов полимеризация протекает при температурах 250-300° С, причем процесс сопровождается выделением тепла, ускоряющего полимеризацию и в результате при недостаточном отводе тепла может произойти взрывчатое разложение оставшегося ацетилена. На рис. 13 приведен график границ полимеризации и взрывчатого распада ацетилена, из которого видно, что при давлении ниже 2,5 кгс/см 2 и температуре ниже 550° С в основном протекает процесс полимеризации, а при давлении свыше 1,5 кгс/см 2 и температуре свыше 570° С будет происходить взрывчатый распад ацетилена.

Взрыв ацетилена может иметь место и при температуре ниже 500° С, но в присутствии катализаторов: окиси алюминия при 490° С, медной стружки — 460° С, окиси железа — 280° С, окиси меди — 240° С. Таким образом, наиболее активными катализаторами являются окись меди и окись железа.

При длительном соприкосновении влажного ацетилена с металлической медью и ее окислами образуется ацетиленид меди СuС2, легко взрывающийся (в сухом виде) при перегреве, трении или ударе. По этой причине для ацетиленовой аппаратуры допускается применение сплавов меди лишь при содержании ее не более 70%.

Взрываемость ацетилена увеличивается при смешении его с газами, вступающими с ним в реакцию. Так, например, ацетилен в смеси с хлором взрывается даже под действием света. В смеси с кислородом ацетилен взрывается при атмосферном давлении, если нагреть смесь до температуры 300° С, причем содержание ацетилена в смеси может колебаться в пределах 2,8-93%. Наиболее взрывоопасны смеси, содержащие около 30% ацетилена и 70% кислорода.

Смеси ацетилена с воздухом взрывчаты при содержании в них ацетилена 2,2-81%. Наиболее взрывоопасны смеси, содержащие 7-13% ацетилена, остальное — воздух. При взрыве ацетилено-воздушных смесей максимальное давление взрыва в 11 -13 раз превышает величину абсолютного начального давления. Если же ацетилен смешать с газами, не вступающими с ним в реакцию, например С02, N2, взрывоопасность его уменьшается; это свойство используется в некоторых химических процессах.

Одним из важных свойств ацетилена является хорошая его растворимость в некоторых жидкостях, в частности в ацетоне (СН3СОСН3). При 20° С один объем технического ацетона растворяет около 20 объемов ацетилена при атмосферном давлении, а при избыточном давлении растворимость возрастает пропорционально давлению. Это свойство ацетилена используется для транспортировки ацетилена в баллонах, в которые в определенном количестве вводится ацетон. В воде при нормальных условиях растворяется 1,15 объема С2Н2 на 1 объем Н20.

Технический ацетилен получается двумя способами:

1) из карбида кальция;

2) из углеводородных продуктов, содержащихся в природных газах, нефти, газах от переработки угля и торфосланцев.

Для газопламенной обработки пока большее значение имеет первый (карбидный) способ, известный уже около столетия. Однако новые способы получения ацетилена все шире внедряются в промышленность, как более прогрессивные и рентабельные.

Так, энергетические к. п. д. для разных процессов получения ацетилена составляют: при карбидном способе — 56%; при процессе с электрокрекингом углеводородов — 66%; при термоокислительном процессе — 75%.

Ниже рассматривается карбидный способ получения ацетилена.

Карбид кальция СаС2 представляет собой твердое вещество кристаллического строения с удельным весом от 2,3 до 2,53 г/см 3 в зависимости от содержания примесей. В свежем изломе карбид кальция имеет серый цвет, иногда с коричневым оттенком.

Технический карбид кальция получается в электродуговых печах при взаимодействии негашеной извести с коксом и антрацитом по эндотермической реакции:

СаО + ЗС = СаС2 + СО — 108 ккал/г-мол. (8)

Для получения одной тонны карбида кальция расходуется 900-950 кг извести, 600 кг кокса и антрацита и затрачивается 2800-4000 квт.ч электроэнергии (для печей большой и средней мощности). Технический карбид кальция содержит до 30% примесей, переходящих в него из исходных материалов.

Средний состав технического карбида кальция (по весу) следующий: карбид кальция СаС2 — 72,5%; известь СаО- 17,3%; окись магния MgO — 0,4%; окись железа Fe23 и окись алюминия A12O3 — 2,5%; окись кремния Si02 — 2,0%; сера S — 0,3%, углерод С — 1,0%; остальные примеси — 4%.

Карбид кальция активно взаимодействует с водой, образуя ацетилен и гидрат окиси кальция (гашеную известь). Реакция имеет резко выраженный экзотермический характер и протекает по уравнению:

При разложении 1 кг СаС2 выделяется, таким образом, около 400 ккал тепла, что требует принятия необходимых мер при получении ацетилена в генераторах для предотвращения перегрева ацетилена и связанной с этим опасности взрыва.

Теоретический выход ацетилена из карбида кальция (принимая, что СаС2 имеет чистоту 100%) может быть определен по уравнению материального баланса, если известны молекулярные веса участвующих в реакции веществ

Теоретический выход, приведенный к 20 °С и 760 мм рт. ст., составит

Vт=26/64=0,46 кг, а по объему Vт/У=0,406/1,09=0,3725 м 3 372,5 л, где 1,09 уд. вес ацетилена при 20 С.

Теоретический расход воды на 1 кг СаС2 составляет: Qт=36,64=0,562 кг, а по объему 0,562 л.

Фактический выход ацетилена из карбида кальция значительно меньше ввиду наличия в техническом СаС2 примесей и частичного разложения его влагой воздуха и находится в пределах 230- 300 л/кг. В табл. 3 приведен выход ацетилена из 1 кг карбида кальция в зависимости от сорта и размеров кусков (грануляции). Большинство ацетиленовых генераторов, выпускаемых в настоящее время, рассчитано на использование карбида кальция крупной грануляции 25/80.

Ацетилен газ с резким запахом

В соответствии с дополнением к ГОСТу 1460-56, утвержденным в 1959 г., карбид кальция в кусках размером 2-8, 8-15 и 15-25 мм, а также в кусках смешанных размеров и мельче 2 мм может поставляться только с согласия потребителей. Допустимое содержание кусков других размеров в сортированном карбиде приведено в табл. 4.

Ацетилен газ с резким запахом

Ацетилен газ с резким запахом

Ввиду значительного теплового эффекта реакции разложения и опасности перегрева ацетилена практически на 1 кг СаС2 в генераторах расходуют от 4 до 12 л воды. Процесс разложения карбида кальция протекает неравномерно: вначале реакция идет очень активно, с бурным выделением ацетилена, а затем скорость ее снижается, что объясняется уменьшением поверхности кусков карбида кальция и образованием на них корки извести, препятствующей доступу воды.

Читать также:  Ножовки по дереву ручные шведские сандвик

Скорость разложения карбида кальция зависит от его чистоты, грануляции, а также от чистоты и температуры воды. На рис. 14 приведены кривые, характеризующие скорость разложения карбида кальция в зависимости от грануляции и температуры воды.

С уменьшением размеров кусков скорость разложения возрастает, а частицы мельче 2 мм (пыль) разлагаются почти мгновенно, поэтому пыль нельзя применять в обычных генераторах, рассчитанных для работы на кусковом карбиде, так как это может привести к взрыву.

Карбид кальция хранится и транспортируется в герметично закупоренных барабанах из кровельной стали двух размеров — на 100 и 130 кг карбида.

Автор: Администрация Общая оценка статьи: Ацетилен газ с резким запахомАцетилен газ с резким запахомАцетилен газ с резким запахомАцетилен газ с резким запахом Ацетилен газ с резким запахомОпубликовано: 2012.06.01

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Ацетилен является основным горючим газом для газовой сварки и резки металлов, температура его плавления при сгорании в смеси с технически чистым кислородом достигает 3150°С.

Ацетилен С2Н2 является химическим соединением углерода и водорода. Технический ацетилен при нормальных давлении и температуре представляет собой бесцветный газ с резким специфическим чесночным запахом, обусловленным содержащимися в нем примесями сероводорода, аммиака, фосфористого водорода и др. Длительное вдыхание его вызывает тошноту, головокружение и даже отравление.

Ацетилен легче воздуха, 1 м3 ацетилена при нормальном атмосферном давлении и температуре 20°С имеет массу 1,09 кг. При нормальном давлении и температуре от —82,4°С (190,6 К) до —84,0°С (189 К) ацетилен переходит в жидкое состояние, а при температуре —85°С (188 К) затвердевает.

Ацетилен — самое распространенное горючее, используемое в процессах газопламенной обработки. При использовании ацетилена необходимо учитывать его взрывоопасные свойства. Ацетилен — высокое эндотермическое соединение, при разложении 1 кг ацетилена выделяется 8373,6 кДж. Температура самовоспламенения колеблется в пределах 240—630°С и зависит от давления и присутствия в нем различных веществ.

Повышение давления существенно снижает температуру самовоспламенения ацетилена. Присутствие в ацетилене других веществ увеличивает поверхность контакта и тем понижает температуру самовоспламенения.

Зависимость температуры воспламенения ацетилена от давления приведена ниже:

Температура, °С. 630 530 475 350

Абсолютное давление, МПа. 0,2 0,3 0,4 2,2

При взрыве ацетилена происходит резкое повышение давления и температуры, что может вызвать большие разрушения и тяжелые несчастные случаи. Ацетилен с воздухом образует взрывоопасные смеси в пределах от 2,2 до 81 % ацетилена по объему при нормальном атмосферном давлении, а с технически чистым кислородом — в пределах от 2,3 до 93% ацетилена. Наиболее взрывоопасны ацетиленовоздушные смеси, содержащие 7—13% ацетилена. Взрыв ацетиле-нокислородной и ацетиленовоздушной смеси, в указанных пределах может произойти от сильного нагрева и искры.

Присутствие окиси меди снижает температуру самовоспламенения ацетилена до 240°С. При определенных условиях ацетилен реагирует с медью, образуя взрывоопасные соединения; вот почему категорически запрещается при изготовлении ацетиленового оборудования применение сплавов, содержащих более 70% меди.

Взрываемость ацетилена понижается при растворении его в жидкостях. Особенно хорошо он растворяется в ацетоне. В одном объеме технического ацетона при 20°С и нормальном атмосферном давлении можно растворить до 20 объемов ацетилена. Растворимость ацетилена в ацетоне увеличивается с увеличением давления и понижением температуры.

Технический ацетилен получают двумя способами: из карбида кальция и из природного газа, нефти, угля.

Ацетилен, полученный из природного газа, называется пиролизным. Пиролизный ацетилен выпускается по МРТУ-03-165—64. Получение ацетилена из природного газа на 30—40% дешевле, чем из карбида кальция.

К месту сварки ацетилен доставляется в специальных стальных баллонах, заполненных пористой пропитанной ацетоном массой, под давлением 1,9 МПа.

Кроме ацетилена при сварке и резке металлов применяют и другие более дешевые и менее дефицитные горючие газы и пары горючих жидкостей. Основная область применения газов-заменителей — кислородная резка, однако в последние годы они находят широкое применение и при других видах газопламенной обработки металлов — пайке, наплавке, газопламенной закалке, металлизации, газопрессовой сварке, сварке цветных металлов и сплавов. Правильное использование газов-заменителей не ухудшает качество сварки и резки металлов; применение их дает более высокую чистоту реза при резке металлов малых толщин.

При сварке температура пламени должна примерно в два раза превышать температуру плавления металлов, поэтому газы-заменители, температура пламени которых ниже, чем у ацетилена, необходимо использовать при сварке металлов с более низкой температурой плавления, чем у сталей. При кислородной резке используются горючие газы, которые при сгорании в смеси с кислородом дают пламя с температурой не ниже 2000°С. Выбор горючего газа зависит от его теплотворной способности. Теплотворной способностью тага называется количество теплоты в килоджоулях, получаемое при полном сгорании 1 м3 газа. Чем выше теплотворная способность газа, тем меньше его расход при сварке и резке металлов. Для полного сгорания одинакового объема различных горючих газов требуется различное количество кислорода, от этого зависит эффективная мощность пламени.

Эффективной мощностью пламени называется количество тепла, вводимое в нагреваемый металл в единицу времени. Для расчетов замены ацетилена другим газом-заменителем пользуются коэффициентом замены ацетилена. Коэффициентом замены ацетилена называется отношение расхода газа-заменителя V3 к расходу ацетилена Va при одинаковой эффективной тепловой мощности: ip=V3/Va.

Водород H2 в нормальных условиях представляет собой горючий газ без цвета и запаха. Это один из самых легких газов, он в 14,5 раза легче воздуха. Водород способен образовывать в определенных пропорциях взрывоопасные смеси с воздухом и кислородом. Поэтому при сварочных работах необходимо строго соблюдать правила безопасности труда. Получают водород разложением воды электрическим током. К месту сварки водород доставляют в стальных баллонах в газообразном состоянии под давлением 15 МГ1а. Баллоны для водорода окрашивают в зеленый цвет. Водород, применяемый для сварочных работ, должен удовлетворять требованиям ГОСТ 3022—80 «Водород технический». Водородно-кислородное пламя имеет синюю окраску и не имеет четких очертаний зон пламени, что затрудняет, его регулировку.

Коксовый газ — бесцветный газ с запахом сероводорода. Коксовый газ получают при выработке кокса из каменного угля, состоит он из смеси газообразных горючих продуктов водорода, метана и других непредельных углеводородов. Применяют в основном для резки сталей, сварки и пайки легкоплавких цветных металлов. Для сварки и резки применяют коксовый газ, очищенный от сернистых соединений и смолистых веществ. Для полного сгорания 1 м3 необходимо 0,9 м3 кислорода. К месту сварки и резки коксовый газ подают по трубопроводам под давлением 1,3— ,1,5 кПа.

Читать также:  Сопло в форме песочных часов

Городской газ является составным горючим газом. Обычно основным компонентом городского газа является природный газ, к нему добавляют коксовый и генераторный газы. Состав городского газа непостоянен, газ типа московского имеет следующий состав: метан (70—95%), водород (до 25%), тяжелые углеводороды (до 1%), азот (до 3%), оксид углерода (до 3%), двуоксид углерода (до 1%), кислород (до 0,5%). К месту сварки городской газ доставляют по трубопроводам. Как заменитель ацетилена он используется для резки сталей, сварки и пайки легкоплавких цветных металлов.

Пропан технический — бесцветный газ с резким запахом, состоящий из пропана С3Н8 или из пропана и пропилена С3Н8, суммарное содержание которых должно быть не менее 93%. Получают пропан при переработке нефтепродуктов. При нормальных условиях пропан находится в газообразном состоянии, а при понижении температуры или повышении давления переходит в жидкое состояние. Так, при температуре 293 К пропан переходит в жидкое состояние при давлении 0,85 МПа. Испарение 1 кг жидкого пропана дает 0,53 м3 паров.

Пропан-бутановая смесь — бесцветный газ с резким запахом —является побочным продуктом при переработке нефти.

Смесь легко превращается в жидкое состояние, например при температуре 233 К пропан-бутановая смесь сжижается при атмосферном давлении. Сжиженные газы хранят только в закрытых емкостях, так как испарение жидкости происходит даже при 273 К.

Плотность пропан-бутана больше плотности воздуха, поэтому необходимо тщательно следить за герметичностью аппаратуры и коммуникаций во избежание образования взрывоопасной смеси газа с воздухом внизу помещения. Заполнение емкостей пропаном и пропан-бутановой смесью, транспортирование их, а также слив газа должны выполняться в соответствии с «Правилами устройства и безопасной эксплуатации сосудов, работающих под давлением», утвержденными Госгортехнадзором.

Пропан-бутановые смеси широко применяются при резке сталей, сварке и пайке легкоплавких цветных металлов, закалке, газовой сварке пластмасс. К месту сварки смесь поставляют в стальных баллонах под давлением 1,6 МПа или по газопроводам через перепускную рампу. При испарении 1 кг пропана образуется 500 дм3 газа.

Бензин является продуктом переработки нефти. Он представляет собой легко испаряющуюся прозрачную жидкость с резким характерным запахом. Пары бензина при сгорании в кислороде дают температуру пламени 2400— 2500°С. Для очистки бензина его фильтруют через войлок. Бензин используется для кислородной резки, а также для сварки и пайки легкоплавких металлов.

Керосин также является продуктом переработки нефти и представляет собой бесцветную желтоватую легко испаряющуюся жидкость. Керосин, применяемый для сварки и резки металлов, должен удовлетворять требованиям ГОСТ 4753—68. Керосин применяют также для сварки и пайки легкоплавких цветных металлов.

Последнее изменение этой страницы: 2016-08-06; Нарушение авторского права страницы

Для процессов газовой сварки и резки могут быть применены различные горючие газы, при сгорании которых в смеси с техническим кислородом температура газового пламени превышает 2000 °С. По химическому составу они, за исключением водорода, представляют собой или углеводородные соединения, или смеси различных углеводородов.

Для газопламенной обработки наибольшее распространение получил ацетилен (С2Н2), при сгорании, в кислороде которого образуется пламя с более высокой температурой, чем при сгорании других горючих газов — заменителей ацетилена.

Ацетилен

Ацетилен представляет собой углеводород ненасыщенного ряда. Его химическая формула С2Н2, структурная формула Н—С = С—Н. При атмосферном давлении и нормальной температуре ацетилен — бесцветный газ. Технический ацетилен вследствие присутствия в нем примесей имеет резкий специфический запах. При 20 °С и 0,1 МПа плотность ацетилена р = 1,09 кг/м 3 . При атмосферном давлении ацетилен сжижается при температуре -82,4. -83,б °С.

Полное сгорание ацетилена происходит по реакции

Ацетилен газ с резким запахом

т. е. для полного сгорания 1 объема ацетилена требуется 2,5 объема кислорода. Высшая теплота сгорания ацетилена при 0 °С и 0,1 МПа (2В = 58660 кДж/м 3 . Теплота реакции сгорания ацетилена Q слагается из теплоты реакции распада ацетилена и суммы теплоты первичных реакций сгорания углерода и водорода.

Распад ацетилена происходит по реакции

Ацетилен газ с резким запахом

Теплота распада Qq = 225,8 кДж/моль или Qq = 8686 кДж/кг.

Важным параметром сварочного пламени помимо его температуры является также интенсивность горения, под которой понимается произведение нормальной скорости горения на теплоту сгорания смеси. Данные об интенсивности горения ацетилена и некоторых других горючих приведены в табл. 2.1. Ацетилен обладает наибольшей интенсивностью горения по сравнению с другими газами, используемыми при газопламенной обработке.

Температура самовоспламенения ацетилена лежит в пределах 240—630 °С и зависит от давления и присутствия в ацетилене различных веществ. Повышение давления существенно снижает температуру самовоспламенения ацетилена. Присутствие в ацетилене частиц других веществ увеличивает поверхность контакта и тем понижает температуру самовоспламенения.

При сжатии ацетилена в компрессоре до давления 2,9 МПа, если температура в конце сжатия не превышает 275 °С, самовоспламенения ацетилена не происходит. Это позволяет наполнять баллоны ацетиленом с целью его длительного хранения и транспортирования. С повышением давления температурный предел начала процесса полимеризации понижается (рис. 2.1).

Практически при использовании ацетилена допустим нагрев его до следующих температур в зависимости от давления: при давлении 0,1 МПа до 300°С, придавлении 0,25 МПа до 150-180°С, при более высоких давлениях до 100 °С.

Один из важных показателей взрывоопасности горючих газов и паров — энергия зажигания. Чем меньше эта величина, тем взрывоопаснее данное вещество. Энергия зажигания кислородно-газовых смесей в 100 раз меньше, чем воздушно-газовых. Ацетилен имеет наименьшую энергию зажигания и в отношении взрывоопасности подобен водороду.

Ацетилен газ с резким запахом

Рис. 2.1. Области полимеризации (I) и взрывчатого распада (II) ацетилена

Оставить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *